Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 25(45): 10546-10551, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31066932

ABSTRACT

Upon coordinating P4 to electron poor cyclopentadienyl-iron cations, the average P-P bond distances shrink and the respective P4 breathing mode in the Raman spectra (600 cm-1 , P4, free ) is blueshifted by >40 cm-1 in [CpFe(CO)(L)(η1 -P4 )]+ cations (L=CO or PPh3 ). Analysis suggests that this corresponds to an umpolung of the bonding from more phosphidic in the known, electron-rich systems to more phosphonium-like in the reported electron-poor versions. This may open new functionalization pathways for white phosphorus P4 .

2.
Chem Sci ; 10(9): 2821-2829, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30997003

ABSTRACT

Instead of yielding the desired non-classical silylium ions, the reactions of different alkenes/alkynes with several [Me3Si]+ sources mostly led to oligomerization, or - in the presence of Me3SiH - hydrosilylation of the alkenes/alkynes. Yet, from the reaction of 2-butyne with ion-like Me3Si-F-Al(ORF)3 (RF = C(CF3)3) the salt of the silylated tetramethyl cyclobutenyl cation [Me4C4-SiMe3]+[al-f-al]- 1 ([al-f-al]- = [(RFO)3Al-F-Al(ORF)3]-) was obtained in good yield (NMR, scXRD, Raman, and IR). All the experimental and calculated evidence suggest a mechanism in which 1 was formed via a non-classical silylium ion as an intermediate. The removal of the [Me3Si]+ moiety from the cation in 1 was investigated as a means to provide free tetramethyl cyclobutadiene (CBD). However, the addition of [NMe4]F, in order to release Me3SiF and form CBD, led to the unexpected deprotonation of the cation. The addition of 4-dimethylaminopyridine to remove the [Me3Si]+ cation as a Lewis acid/base adduct, led to an adduct with the four-membered ring in the direct neighborhood of the Me3Si group. By the addition of Et2O to a solution of 1, the [F-Al(ORF)3]- anion (and Et2O-Al(ORF)3) was generated from the [al-f-al]- counterion. Subsequently, the [F-Al(ORF)3]- anion abstracted the [Me3Si]+ moiety from [Me4C4-SiMe3]+, probably releasing CBD. However, due to the immediate reaction of CBD with [Me4C4-SiMe3]+ and subsequent oligomerization, it was not possible to use CBD in follow-up chemistry.

3.
Chem Sci ; 9(35): 7058-7068, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30310626

ABSTRACT

By reaction of the Lewis acid Me3Si-F-Al(ORF)3 with a series of [PF6]- salts, gaseous PF5 and Me3Si-F are liberated and salts of the anion [F-Al(ORF)3]- ([f-al]-; RF = C(CF3)3) can be obtained. By addition of another equivalent of Me3Si-F-Al(ORF)3 to [f-al]-, gaseous Me3Si-F is released and salts of the least coordinating anion [(RFO)3Al-F-Al(ORF)3]- ([al-f-al]-) are formed. Both procedures work for a series of synthetically useful cations including Ag+, [NO]+, [Ph3C]+ and in very clean reactions with 5 g batch sizes giving excellent yields typically exceeding 90%. In addition, the synthesis of Me3Si-F-Al(ORF)3 has been optimized and scaled up to 85 g batches in an one-pot procedure. These anions could previously only be obtained by difficult to control decomposition reactions of [Al(ORF)4]- or by halide abstraction reactions with Me3Si-F-Al(ORF)3, generating relatively large countercations that are unsuited for further use as universal starting materials. Especially [al-f-al]- is of interest for the stabilization of reactive cations, since it is even weaker coordinating than [Al(ORF)4]- and more stable against strong electrophiles. This bridged anion can be seen as an adduct of [f-al]- and Al(ORF)3. Thus, it is similarly Lewis acidic as BF3 and eventually reacts with nucleophiles (Nu) from the reaction environment to yield Nu-Al(ORF)3 and [f-al]-. This prevents working with [al-f-al]- salts in ethereal or other donor solvents. By contrast, the [f-al]- anion is no longer Lewis acidic and may therefore be used for reactions involving stronger nucleophiles than the [al-f-al]- anion can withstand. Subsequently it may be transformed into the [al-f-al]- salt by simple addition of one equivalent of Me3Si-F-Al(ORF)3.

4.
Chemistry ; 23(50): 12305-12313, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28494112

ABSTRACT

By reaction of two equivalents of Me3 Si-F-Al(ORF )3 1 with an equimolar amount of PPh2 Cl, the salt [Ph2 P-PPh2 Cl]+ [(RF O)3 Al-F-Al(ORF )3 ]- 2 is prepared smoothly in 91 % yield (NMR, XRD). The synthesis of [Ph2 P-PPh3 ]+ [(RF O)3 Al-F-Al(ORF )3 ]- 3 is best achieved by a two-step reaction: first, two equivalents of 1 react with one PPh3 to give [Me3 Si-PPh3 ]+ [(RF O)3 Al-F-Al(ORF )3 ]- 4 (NMR, XRD), which, upon reaction with PPh2 Cl, yields pure 3 and Me3 SiCl (NMR, XRD). Typically, a stoichiometry of two equivalents of 1 with respect to one equivalent of the chloride donor should be used. Otherwise, the residual strong Lewis acidity of the [(RF O)3 Al-F-Al(ORF )3 ]- anion in the presence of the [F-Al(ORF )3 ]- anion-that forms with less than two equivalents of 1-leads to further chloride exchange reactions that complicate work-up. This route presents the easiest way to introduce the least-coordinating [(RF O)3 Al-F-Al(ORF )3 ]- anion into a system. We expect a wide use of this route in all areas, in which chloride-bond heterolysis in combination with very weakly coordinating anions is desirable. Additionally, we performed calculations on the bond dissociation mechanisms of [R2 P-PMe3 ]+ and the isoelectronic Me2 P-SiMe3 and Me2 Si-PMe3 in dependence of the solvent permittivity. These calculations show, especially for the neutral reference compounds, a heavy influence of the solvent on the dissociation mechanism, which is why we suggest investigating these properties in solution instead of gas phase.

5.
Chemistry ; 22(42): 15085-15094, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27593411

ABSTRACT

A series of gold acetonitrile complexes [Au(NCMe)2 ]+ [WCA]- with weakly coordinating counterions (WCAs) was synthesized by the reaction of elemental gold and nitrosyl salts [NO]+ [WCA]- in acetonitrile ([WCA]- =[GaCl4 ]- , [B(CF3 )4 ]- , [Al(ORF )4 ]- ; RF =C(CF3 )3 ). In the crystal structures, the [Au(NCMe)2 ]+ units appeared as monomers, dimers, or chains. A clear correlation between the aurophilicity and the coordinating ability of counterions was observed, with more strongly coordinating WCAs leading to stronger aurophilic contacts (distances, C-N stretching frequencies of [Au(NCMe)2 ]+ units). An attempt to prepare [Au(L)2 ]+ units, even with less weakly basic solvents like CH2 Cl2 , led to decomposition of the [Al(ORF )4 ]- anion and formation of [NO(CH2 Cl2 )2 ]+ [F(Al(ORF )3 )2 ]- . All nitrosyl reagents [NO]+ [WCA]- were generated according to an optimized procedure and were thoroughly characterized by Raman and NMR spectroscopy. Moreover, the to date unknown species [NO]+ [B(CF3 )3 CN]- was prepared. Its reaction with gold unexpectedly produced [Au(NCMe)2 ]+ [Au(NCB(CF3 )3 )2 ]- , in which the cyanoborate counterion acts as an anionic ligand itself. Interestingly, the auroborate anion [Au(NCB(CF3 )3 )2 ]- behaves as a weakly coordinating counterion, which becomes evident from the crystallographic data and the vibrational spectral characteristics of the [Au(NCMe)2 ]+ cation in this complex. Ligand exchange in the only room temperature stable salt of this series, [Au(NCMe)2 ]+ [Al(ORF )4 ]- , is facile and, for example, [Au(PPh3 )(NCMe)]+ [Al(ORF )4 ]- can be selectively generated. This reactivity opens the possibility to generate various [AuL1 L2 ]+ [Al(ORF )4 ]- salts through consecutive ligand-exchange reactions that offer access to a huge variety of AuI complexes for gold catalysis.

6.
Chemistry ; 21(20): 7489-502, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25808398

ABSTRACT

Bulk protonated mesitylene, toluene, and benzene bromoaluminate salts were stabilized and characterized in the superacidic system HBr/n AlBr3 with NMR spectroscopy and X-ray analysis of [HC6 H3 (CH3 )3 ](+) [AlBr4 ](-) (1), [HC6 H5 (CH3 )](+) [AlBr4 ](-) (2), and [C6 H7 ](+) [Al2 Br7 ](-) ⋅C6 H6 (3). Protonation attempts in bromoaluminate ILs led to a complete protonation of mesitylene, and a protonation degree of up to 15 % for toluene in the IL BMP(+) [Al2 Br7 ](-) . Benzene could only be protonated in the more acidic IL BMP(+) [Al3 Br10 ](-) , with a degree of 25 %. Protonation attempts on aromatics provide evidence that the bromoaluminate ILs tolerate superacidic environments. On the basis of the absolute Brønsted acidity scale, quantum chemical calculations confirmed the superacidic properties, and rank the acidities in ILs down to a pHabs value of 164 with an error of less than one pH unit compared with experimental findings. The neat AlBr3 /HBr system even may reach acidities down to pHabs 163.

SELECTION OF CITATIONS
SEARCH DETAIL
...