Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(7): e0180063, 2017.
Article in English | MEDLINE | ID: mdl-28704387

ABSTRACT

The United States Virgin Islands are comprised of two separate insular platforms separated by the deep water Anegada Passage. Although managed by the same regulations, as one fishery, several physical and spatial differences exist between the two northern shelf islands, St. Thomas and St. John, and isolated St. Croix. Based on two long-term fisheries independent datasets, collected by the U.S. Virgin Islands Territorial Coral Reef Monitoring Program and the National Oceanographic and Atmospheric Administration Center for Coastal Monitoring and Assessment, there were significant differences between the northern USVI and St. Croix in both the occurrence and size of several species of large and commercially important reef fishes. These fishes are primarily apex piscivores and generally the first species over-exploited in small-scale fisheries. The disparities between the fish communities on the two island shelves cannot be explained solely by differences in habitat (coral cover, rugosity) or fisheries management, such as relative amount of marine protected area in local waters. They are instead probably caused by a combination of several other interrelated factors including water depth, fishing methodology, fishable area, and the presence or absence of viable fish spawning areas. This study considers those aspects, and illustrates the need for management of island artisanal fisheries that is tailored to the physical and spatial constraints imposed by insular platforms.


Subject(s)
Fishes/classification , Fishes/growth & development , Animals , Biodiversity , Conservation of Natural Resources , Coral Reefs , Fisheries , United States Virgin Islands
2.
Mar Pollut Bull ; 64(5): 949-55, 2012 May.
Article in English | MEDLINE | ID: mdl-22405804

ABSTRACT

Debris removal programs are combatting the accumulation of derelict fishing gear and other debris in marine habitats. We analyzed 5 years of lobster trap debris removal data in Biscayne National Park, Florida to assess removal efficiency and develop spatially-explicit mapping tools to guide future removals. We generated and validated debris "hot spots" maps that combined remotely-sensed data (i.e. benthic habitat type and bathymetry) with 862 locations of previous debris collection. Our hot spot models spatially depict regions of likely debris accumulation, reducing the search area by 95% (from 332 km(2) to 18 km(2)) and encompassing 100% of the validation sites. Our analyses indicate removal contractors using sub-surface towed divers enhanced debris recovery. Additionally, the quantity of debris removed did not decrease with increased efforts, suggesting that debris supply in situ exceeds removal efforts. We conclude with the importance of coupling analysis of ongoing debris removal programs with GIS technology to improve removal efforts.


Subject(s)
Environmental Restoration and Remediation/methods , Fisheries/statistics & numerical data , Geographic Information Systems , Models, Chemical , Water Pollutants/analysis , Animals , Environmental Monitoring , Fisheries/instrumentation , Palinuridae
SELECTION OF CITATIONS
SEARCH DETAIL
...