Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 818: 306-327, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29050968

ABSTRACT

Despite the importance of the hERG channel in drug discovery and the sizable number of antagonist molecules discovered, only a few hERG agonists have been discovered. Here we report a novel hERG agonist; SKF-32802 and a structural analog of the agonist NS3623, SB-335573. These were discovered through a similarity search of published hERG agonists. SKF-32802 incorporates an amide linker rather than NS3623's urea, resulting in a compound with a different mechanism of action. We find that both compounds decrease the time constant of open channel kinetics, increase the amplitude of the envelope of tails assay, mildly increased the amplitude of the IV curve, bind the hERG channel in either open or closed states, increase the plateau of the voltage dependence of activation and modulate the effects of the hERG antagonist, quinidine. Neither compound affects inactivation nor deactivation kinetics, a property unique among hERG agonists. Additionally, SKF-32802 induces a leftward shift in the voltage dependence of activation. Our structural models show that both compounds make strong bridging interactions with multiple channel subunits and are stabilized by internal hydrogen bonding similar to NS3623, PD-307243 and RPR26024. While SB-335573 binds in a nearly identical fashion as NS3623, SKF-32802 makes an additional hydrogen bond with neighboring threonine 623. In summary, SB-335573 is a type 4 agonist which increases open channel probability while SKF-32802 is a type 3 agonist which induces a leftward shift in the voltage dependence of activation.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Drug Discovery , Electrophysiological Phenomena/drug effects , Ether-A-Go-Go Potassium Channels/agonists , Tetrazoles/chemistry , Tetrazoles/pharmacology , Aniline Compounds/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Ion Channel Gating/drug effects , Kinetics , Molecular Docking Simulation , Protein Conformation , Tetrazoles/metabolism
2.
ACS Med Chem Lett ; 7(3): 217-22, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985301

ABSTRACT

A novel series of potent and selective hexokinase 2 (HK2) inhibitors, 2,6-disubstituted glucosamines, has been identified based on HTS hits, exemplified by compound 1. Inhibitor-bound crystal structures revealed that the HK2 enzyme could adopt an "induced-fit" conformation. The SAR study led to the identification of potent HK2 inhibitors, such as compound 34 with greater than 100-fold selectivity over HK1. Compound 25 inhibits in situ glycolysis in a UM-UC-3 bladder tumor cell line via (13)CNMR measurement of [3-(13)C]lactate produced from [1,6-(13)C2]glucose added to the cell culture.

3.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390428

ABSTRACT

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Subject(s)
Aminopyridines/chemistry , Dipeptides/chemistry , Enzyme Inhibitors/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Administration, Oral , Allosteric Regulation , Amino Acid Motifs , Aminopyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Dipeptides/pharmacology , Disease Models, Animal , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Female , Heterografts , Humans , Mice , Mice, SCID , Models, Biological , Neoplasms , Protein Phosphatase 2C
4.
J Pharmacol Toxicol Methods ; 64(3): 269-76, 2011.
Article in English | MEDLINE | ID: mdl-21996251

ABSTRACT

INTRODUCTION: The development of drug candidates must take into account that many compounds have off-target activity against voltage-gated ion channels (VGIC) which may prevent their progression to market. Of particular concern are hERG and hNa(V)1.5. Screening against these ion channels is necessary but expensive, partially due to maintenance of constantly cultured cell lines. Here, we show that frozen HEK-293 cells can be maintained indefinitely, reducing variability in cell performance, time and expense of cell culture. METHODS: Cells, constantly cultured or frozen, were assayed on the PatchXpress 7000A using tool compounds. RESULTS: Amitriptyline, quinidine, compound A, fluoxetine and imipramine inhibited hERG with IC(50)s (paired values denote constantly cultured and frozen, respectively) of 4.8±0.4 and 5.1±0.4, 1.4±0.1 and 1.1±0.1, 24.4±2.4 and 21.9±1.8, 2.1±0.4 and 2.1±0.1, 5.2±0.4 and 4.0±0.2µM. Quinidine, flecainide, mexiletine and amitriptyline inhibited hNa(V)1.5 with IC(50)s of 46.6±4.3 and 28.0±2.3, 7.6±0.7 and 6.2±0.5, 153.5±13.0 and 106.0±4.7, 5.5±0.5 and 4.8±0.2µM. Voltage dependences of activation (V(1/2)) for hERG were statistically identical, 0.4±0.8mV and 2.5±0.5mV. In hNa(V)1.5, the V(1/2) of inactivation and activation were statistically identical, -82.7±0.1mV versus -84.9±0.3mV, -47.5±0.3mV versus -45.0±0.6mV. Current density in both conditions in hERG experiments was similar, 47.0±4.1pA versus 42.3±6.0pA/pF. DISCUSSION: hERG and hNa(V)1.5 screens run using frozen cells have statistically identical IC(50)s, voltage dependence of activation, IV relationships and current density to screens using continuously cultured cells. Frozen cells have more constant performance and allow rapid switching between experiments on several cell lines without sacrificing data quality.


Subject(s)
Drug Evaluation, Preclinical/methods , Electrophysiological Phenomena/drug effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Potassium Channel Blockers/pharmacology , Sodium Channels/metabolism , Amitriptyline/pharmacology , Cell Line, Transformed , Cryopreservation/methods , ERG1 Potassium Channel , Fluoxetine/pharmacology , HEK293 Cells , Humans , Imipramine/pharmacology , Membrane Potentials/drug effects , NAV1.5 Voltage-Gated Sodium Channel , Patch-Clamp Techniques/methods , Quinidine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...