Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(22): 221301, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29906152

ABSTRACT

A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.

2.
Phys Rev Lett ; 113(12): 121802, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25279622

ABSTRACT

We present the results of searches for nucleon decay via n→ν[over ¯]π0 and p→ν[over ¯]π+ using data from a combined 172.8 kt·yr exposure of Super-Kamiokande-I,-II, and-III. We set lower limits on the partial lifetime for each of these modes: τn→ν[over ¯]π0>1.1×10(33) years and τp→ν[over ¯]π+>3.9×10(32) years at a 90% confidence level.

3.
Phys Rev Lett ; 110(18): 181802, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683190

ABSTRACT

Super-Kamiokande atmospheric neutrino data were fit with an unbinned maximum likelihood method to search for the appearance of tau leptons resulting from the interactions of oscillation-generated tau neutrinos in the detector. Relative to the expectation of unity, the tau normalization is found to be 1.42 ± 0.35(stat)(-0.12)(+0.14)(syst) excluding the no-tau-appearance hypothesis, for which the normalization would be zero, at the 3.8σ level. We estimate that 180.1 ± 44.3(stat)(-15.2)(+17.8) (syst) tau leptons were produced in the 22.5 kton fiducial volume of the detector by tau neutrinos during the 2806 day running period. In future analyses, this large sample of selected tau events will allow the study of charged current tau neutrino interaction physics with oscillation produced tau neutrinos.

SELECTION OF CITATIONS
SEARCH DETAIL
...