Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38915655

ABSTRACT

Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examined the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction, through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.

2.
Dev Cell ; 59(11): 1425-1438.e8, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574735

ABSTRACT

Mammalian Notch signaling occurs when the binding of Delta or Jagged to Notch stimulates the proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to control target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded the entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with spatiotemporal precision.


Subject(s)
Cell Nucleus , Receptors, Notch , Signal Transduction , Synapses , Humans , Cell Nucleus/metabolism , Receptors, Notch/metabolism , Synapses/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Domains , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
3.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808809

ABSTRACT

Mammalian Notch signaling occurs when binding of Delta or Jagged to Notch stimulates proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to regulate target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with unprecedented spatiotemporal precision.

4.
Sci Signal ; 16(796): eadg6474, 2023 08.
Article in English | MEDLINE | ID: mdl-37527352

ABSTRACT

Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.


Subject(s)
Amyloid Precursor Protein Secretases , Receptors, Notch , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Ligands , Receptors, Notch/genetics , Receptors, Notch/metabolism , Cell Membrane/metabolism , Signal Transduction , Receptor, Notch1/genetics
5.
Sci Rep ; 9(1): 11797, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395941

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Sci Rep ; 9(1): 8910, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222145

ABSTRACT

The monomeric GTPase RalB controls crucial physiological processes, including autophagy and invasion, but it still remains unclear how this multi-functionality is achieved. Previously, we reported that the RalGEF (Guanine nucleotide Exchange Factor) RGL2 binds and activates RalB to promote invasion. Here we show that RGL2, a major activator of RalB, is also required for autophagy. Using a novel automated image analysis method, Endomapper, we quantified the endogenous localization of the RGL2 activator and its substrate RalB at different endomembrane compartments, in an isogenic normal and Ras-transformed cell model. In both normal and Ras-transformed cells, we observed that RGL2 and RalB substantially localize at early and recycling endosomes, and to lesser extent at autophagosomes, but not at trans-Golgi. Interestingly the use of a FRET-based RalB biosensor indicated that RalB signaling is active at these endomembrane compartments at basal level in rich medium. Furthermore, induction of autophagy by nutrient starvation led to a considerable reduction of early and recycling endosomes, in contrast to the expected increase of autophagosomes, in both normal and Ras-transformed cells. However, autophagy mildly affected relative abundances of both RGL2 and RalB at early and recycling endosomes, and at autophagosomes. Interestingly, RalB activity increased at autophagosomes upon starvation in normal cells. These results suggest that the contribution of endosome membranes (carrying RGL2 and RalB molecules) increases total pool of RGL2-RalB at autophagosome forming compartments and might contribute to amplify RalB signaling to support autophagy.


Subject(s)
Autophagy/physiology , Signal Transduction , ral GTP-Binding Proteins/metabolism , Cell Compartmentation , Guanine Nucleotide Exchange Factors/metabolism , Humans , Intracellular Membranes/metabolism , Protein Transport , ral GTP-Binding Proteins/physiology
7.
J Exp Clin Cancer Res ; 38(1): 158, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-30979377

ABSTRACT

BACKGROUND: RASSF1A, a tumor suppressor gene, is frequently inactivated in lung cancer leading to a YAP-dependent epithelial-mesenchymal transition (EMT). Such effects are partly due to the inactivation of the anti-migratory RhoB GTPase via the inhibitory phosphorylation of GEF-H1, the GDP/GTP exchange factor for RhoB. However, the kinase responsible for RhoB/GEF-H1 inactivation in RASSF1A-depleted cells remained unknown. METHODS: NDR1/2 inactivation by siRNA or shRNA effects on epithelial-mesenchymal transition, invasion, xenograft formation and growth in SCID-/- Beige mice, apoptosis, proliferation, cytokinesis, YAP/TAZ activation were investigated upon RASSF1A loss in human bronchial epithelial cells (HBEC). RESULTS: We demonstrate here that depletion of the YAP-kinases NDR1/2 reverts migration and metastatic properties upon RASSF1A loss in HBEC. We show that NDR2 interacts directly with GEF-H1 (which contains the NDR phosphorylation consensus motif HXRXXS/T), leading to GEF-H1 phosphorylation. We further report that the RASSF1A/NDR2/GEF-H1/RhoB/YAP axis is involved in proper cytokinesis in human bronchial cells, since chromosome proper segregation are NDR-dependent upon RASSF1A or GEF-H1 loss in HBEC. CONCLUSION: To summarize, our data support a model in which, upon RASSF1A silencing, NDR2 gets activated, phosphorylates and inactivates GEF-H1, leading to RhoB inactivation. This cascade induced by RASSF1A loss in bronchial cells is responsible for metastasis properties, YAP activation and cytokinesis defects.


Subject(s)
Cell Movement/genetics , Cytokinesis/genetics , Gene Silencing , Genes, Suppressor , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/genetics , Animals , Biomarkers, Tumor , Cell Cycle Proteins , Cell Line, Tumor , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis , Nuclear Proteins/metabolism , Phenotype , Phosphorylation , Prognosis , Transcription Factors/metabolism , rhoB GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...