Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36124989

ABSTRACT

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Subject(s)
Lignin , Oryza , Lignin/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Mutation/genetics , Cell Wall/metabolism
2.
Plant Physiol ; 190(4): 2155-2172, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36149320

ABSTRACT

The 4-coumarate:coenzyme A ligase (4CL) is a key enzyme that contributes to channeling metabolic flux in the cinnamate/monolignol pathway, leading to the production of monolignols, p-hydroxycinnamates, and a flavonoid tricin, the major building blocks of lignin polymer in grass cell walls. Vascular plants often contain multiple 4CL genes; however, the contribution of each 4CL isoform to lignin biosynthesis remains unclear, especially in grasses. In this study, we characterized the functions of two rice (Oryza sativa L.) 4CL isoforms (Os4CL3 and Os4CL4) primarily by analyzing the cell wall chemical structures of rice mutants generated by CRISPR/Cas9-mediated targeted mutagenesis. A series of chemical and nuclear magnetic resonance analyses revealed that loss-of-function of Os4CL3 and Os4CL4 differently altered the composition of lignin polymer units. Loss of function of Os4CL3 induced marked reductions in the major guaiacyl and syringyl lignin units derived from both the conserved non-γ-p-coumaroylated and the grass-specific γ-p-coumaroylated monolignols, with more prominent reductions in guaiacyl units than in syringyl units. In contrast, the loss-of-function mutation to Os4CL4 primarily decreased the abundance of the non-γ-p-coumaroylated guaiacyl units. Loss-of-function of Os4CL4, but not of Os4CL3, reduced the grass-specific lignin-bound tricin units, indicating that Os4CL4 plays a key role not only in monolignol biosynthesis but also in the biosynthesis of tricin used for lignification. Further, the loss-of-function of Os4CL3 and Os4CL4 notably reduced cell-wall-bound ferulates, indicating their roles in cell wall feruloylation. Overall, this study demonstrates the overlapping but divergent roles of 4CL isoforms during the coordinated production of various lignin monomers.


Subject(s)
Oryza , Oryza/metabolism , Lignin/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Cell Wall/metabolism , Mutation/genetics
3.
Sci Rep ; 9(1): 17153, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748605

ABSTRACT

Lignin is a complex phenylpropanoid polymer deposited in plant cell walls. Lignin has long been recognized as an important limiting factor for the polysaccharide-oriented biomass utilizations. To mitigate lignin-associated biomass recalcitrance, numerous mutants and transgenic plants that produce lignocellulose with reduced lignin contents and/or lignins with altered chemical structures have been produced and characterised. However, it is not fully understood how altered lignin chemistry affects the supramolecular structure of lignocellulose, and consequently, its utilization properties. Herein, we conducted comprehensive chemical and supramolecular structural analyses of lignocellulose produced by a rice cad2 mutant deficient in CINNAMYL ALCOHOL DEHYDROGENASE (CAD), which encodes a key enzyme in lignin biosynthesis. By using a solution-state two-dimensional NMR approach and complementary chemical methods, we elucidated the structural details of the altered lignins enriched with unusual hydroxycinnamaldehyde-derived substructures produced by the cad2 mutant. In parallel, polysaccharide assembly and the molecular mobility of lignocellulose were investigated by solid-state 13C MAS NMR, nuclear magnetic relaxation, X-ray diffraction, and Simon's staining analyses. Possible links between CAD-associated lignin modifications (in terms of total content and chemical structures) and changes to the lignocellulose supramolecular structure are discussed in the context of the improved biomass saccharification efficiency of the cad2 rice mutant.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Lignin/chemistry , Lignin/metabolism , Oryza/chemistry , Oryza/metabolism , Plant Proteins/chemistry , Biomass , Cell Wall/chemistry , Cell Wall/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Molecular Structure , Mutation/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...