Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cytoskeleton (Hoboken) ; 72(11): 585-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26492945

ABSTRACT

Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.


Subject(s)
Cytoskeleton/metabolism , Myosins/metabolism , Tetrahymena thermophila/metabolism , Models, Molecular , Protein Binding
3.
mBio ; 6(2)2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25873371

ABSTRACT

UNLABELLED: Phylogenomic footprinting is an approach for ab initio identification of genome-wide regulatory elements in bacterial species based on sequence conservation. The statistical power of the phylogenomic approach depends on the degree of sequence conservation, the length of regulatory elements, and the level of phylogenetic divergence among genomes. Building on an earlier model, we propose a binomial model that uses synonymous tree lengths as neutral expectations for determining the statistical significance of conserved intergenic spacer (IGS) sequences. Simulations show that the binomial model is robust to variations in the value of evolutionary parameters, including base frequencies and the transition-to-transversion ratio. We used the model to search for regulatory sequences in the Lyme disease species group (Borrelia burgdorferi sensu lato) using 23 genomes. The model indicates that the currently available set of Borrelia genomes would not yield regulatory sequences shorter than five bases, suggesting that genome sequences of additional B. burgdorferi sensu lato species are needed. Nevertheless, we show that previously known regulatory elements are indeed strongly conserved in sequence or structure across these Borrelia species. Further, we predict with sufficient confidence two new RpoS binding sites, 39 promoters, 19 transcription terminators, 28 noncoding RNAs, and four sets of coregulated genes. These putative cis- and trans-regulatory elements suggest novel, Borrelia-specific mechanisms regulating the transition between the tick and host environments, a key adaptation and virulence mechanism of B. burgdorferi. Alignments of IGS sequences are available on BorreliaBase.org, an online database of orthologous open reading frame (ORF) and IGS sequences in Borrelia. IMPORTANCE: While bacterial genomes contain mostly protein-coding genes, they also house DNA sequences regulating the expression of these genes. Gene regulatory sequences tend to be conserved during evolution. By sequencing and comparing related genomes, one can therefore identify regulatory sequences in bacteria based on sequence conservation. Here, we describe a statistical framework by which one may determine how many genomes need to be sequenced and at what level of evolutionary relatedness in order to achieve a high level of statistical significance. We applied the framework to Borrelia burgdorferi, the Lyme disease agent, and identified a large number of candidate regulatory sequences, many of which are known to be involved in regulating the phase transition between the tick vector and mammalian hosts.


Subject(s)
Borrelia burgdorferi Group/genetics , Computational Biology/methods , Regulatory Sequences, Nucleic Acid , Biostatistics/methods , Conserved Sequence , DNA, Intergenic
4.
BMC Bioinformatics ; 15: 233, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24994456

ABSTRACT

BACKGROUND: The bacterial genus Borrelia (phylum Spirochaetes) consists of two groups of pathogens represented respectively by B. burgdorferi, the agent of Lyme borreliosis, and B. hermsii, the agent of tick-borne relapsing fever. The number of publicly available Borrelia genomic sequences is growing rapidly with the discovery and sequencing of Borrelia strains worldwide. There is however a lack of dedicated online databases to facilitate comparative analyses of Borrelia genomes. DESCRIPTION: We have developed BorreliaBase, an online database for comparative browsing of Borrelia genomes. The database is currently populated with sequences from 35 genomes of eight Lyme-borreliosis (LB) group Borrelia species and 7 Relapsing-fever (RF) group Borrelia species. Distinct from genome repositories and aggregator databases, BorreliaBase serves manually curated comparative-genomic data including genome-based phylogeny, genome synteny, and sequence alignments of orthologous genes and intergenic spacers. CONCLUSIONS: With a genome phylogeny at its center, BorreliaBase allows online identification of hypervariable lipoprotein genes, potential regulatory elements, and recombination footprints by providing evolution-based expectations of sequence variability at each genomic locus. The phylo-centric design of BorreliaBase (http://borreliabase.org) is a novel model for interactive browsing and comparative analysis of bacterial genomes online.


Subject(s)
Borrelia/genetics , Databases, Genetic , Genome, Bacterial/genetics , Phylogeny , Web Browser , Evolution, Molecular , Humans , Sequence Alignment , User-Computer Interface
5.
Infect Genet Evol ; 27: 576-93, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24704760

ABSTRACT

Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), the group of bacterial species represented by Lyme disease pathogens, has one of the most complex and variable genomic architectures among prokaryotes. Showing frequent recombination within and limited gene flow among geographic populations, the B. burgdorferi s.l. genomes provide an excellent window into the processes of bacterial evolution at both within- and between-population levels. Comparative analyses of B. burgdorferi s.l. genomes revealed a highly dynamic plasmid composition but a conservative gene repertoire. Gene duplication and loss as well as sequence variations at loci encoding surface-localized lipoproteins (e.g., the PF54 genes) are strongly associated with adaptive differences between species. There are a great many conserved intergenic spacer sequences that are candidates for cis-regulatory elements and non-coding RNAs. Recombination among coexisting strains occurs at a rate approximately three times the mutation rate. The coexistence of a large number of genomic groups within local B. burgdorferi s.l. populations may be driven by immune-mediated diversifying selection targeting major antigen loci as well as by adaptation to multiple host species. Questions remain regarding the ecological causes (e.g., climate change, host movements, or new adaptations) of the ongoing range expansion of B. burgdorferi s.l. and on the genomic variations associated with its ecological and clinical variability. Anticipating an explosive growth of the number of B. burgdorferi s.l. genomes sampled from both within and among species, we propose genome-based methods to test adaptive mechanisms and to identify molecular bases of phenotypic variations. Genome sequencing is also necessary for monitoring a likely increase of genetic admixture of previously isolated species and populations in North America and elsewhere.


Subject(s)
Borrelia burgdorferi/genetics , Genome, Bacterial , Genomics , Animals , Biological Evolution , Genetics, Population , Humans , Lyme Disease/epidemiology , Lyme Disease/microbiology , New England , Phylogeny , Phylogeography , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...