Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 9: 817274, 2022.
Article in English | MEDLINE | ID: mdl-35295607

ABSTRACT

Purpose: Microtubules (MTs) are structural units made of α and ß tubulin subunits in the cytoskeleton responsible for axonal transport, information processing, and signaling mechanisms-critical for healthy brain function. Chronic cocaine exposure affects the function, organization, and stability of MTs in the brain, thereby impairing overall neurochemical and cognitive processes. At present, we have no reliable, non-invasive methods to image MTs for cocaine use disorder (CUD). Recently we reported the effect of cocaine in patient-derived neuroblastoma SH-SY5Y cells. Here we report preliminary results of a potential imaging biomarker of CUD using the brain penetrant MT-based radiotracer, [11C]MPC-6827, in an established rodent model of cocaine self-administration (SA). Methods: Cell uptake studies were performed with [11C]MPC-6827 in SH-SY5Y cells, treated with or without cocaine (n = 6/group) at 30 and 60 min incubations. MicroPET/CT brain scans were performed in rats at baseline and 35 days after cocaine self-administration and compared with saline-treated rats as controls (n = 4/sex). Whole-body post-PET biodistribution, plasma metabolite assay, and brain autoradiography were performed in the same rats from imaging. Results: Cocaine-treated SH-SY5Y cells demonstrated a ∼26(±4)% decrease in radioactive uptake compared to non-treated controls. Both microPET/CT imaging and biodistribution results showed lower (∼35 ± 3%) [11C]MPC-6827 brain uptake in rats that had a history of cocaine self-administration compared to the saline-treated controls. Plasma metabolite assays demonstrate the stability (≥95%) of the radiotracer in both groups. In vitro autoradiography also demonstrated lower radioactive uptake in cocaine rats compared to the control rats. [11C]MPC-6827's in vitro SH-SY5Y neuronal cell uptake, in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and in vitro autoradiography results corroborated well with each other, demonstrating decreased radioactive brain uptake in cocaine self-administered rats versus controls. There were no significant differences either in cocaine intake or in [11C]MPC-6827 uptake between the male and female rats. Conclusions: This project is the first to validate in vivo imaging of the MT-associations with CUD in a rodent model. Our initial observations suggest that [11C]MPC-6827 uptake decreases in cocaine self-administered rats and that it may selectively bind to destabilized tubulin units in the brain. Further longitudinal studies correlating cocaine intake with [11C]MPC-6827 PET brain measures could potentially establish the MT scaffold as an imaging biomarker for CUD, providing researchers and clinicians with a sensitive tool to better understand the biological underpinnings of CUD and tailor new treatments.

2.
Pain ; 161(5): 960-969, 2020 05.
Article in English | MEDLINE | ID: mdl-32040075

ABSTRACT

Pain alters cognitive performance through centrally mediated effects in the brain. In this study, we hypothesized that persistent activation of peripheral nociceptors after injury would lead to the development of a chronic pain state that impairs attention-related behavior and results in changes in peripheral neuron phenotypes. Attentional performance was measured in rats using the 5-choice serial reaction time titration variant to determine the initial impact of partial L5 spinal nerve ligation and the effect of persistent nociceptor activation on the resolution of injury. The changes in peripheral neuronal sensibilities and phenotypes were determined in sensory afferents using electrophysiologic signatures and receptive field properties from dorsal root ganglion recordings. Partial spinal nerve injury impaired attentional performance, and this was further impaired in a graded fashion by nociceptive input through an engineered surface. Impairment in attention persisted for only up to 4 days initially, followed by a second phase 7 to 10 weeks after injury in animals exposed to nociceptive input. In animals with prolonged impairment in behavior, the mechanonociceptors displayed a persistent hypersensitivity marked by decreased threshold, increased activity to a given stimulus, and spontaneous activity. Nerve injury disrupts attentional performance acutely and is worsened with peripheral mechanonociceptor activation. Acute impairment resolves, but persistent nociceptive activation produces re-emergence of impairment in the attention-related task associated with electrophysiological abnormalities in peripheral nociceptors. This is consistent with the development of a chronic pain state marked by cognitive impairment and related to persistently abnormal peripheral input.


Subject(s)
Cognitive Dysfunction , Peripheral Nerve Injuries , Animals , Ganglia, Spinal , Nociception , Nociceptors , Peripheral Nerve Injuries/complications , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...