Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Signal ; 17(844): eadn6052, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980922

ABSTRACT

Inhibitors of the transforming growth factor-ß (TGF-ß) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-ß homologs has safety liabilities. TGF-ß1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-ß-binding proteins (LTBPs) present TGF-ß1 in the extracellular matrix, and TGF-ß1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-ß1 presented by LTBPs but did not bind to TGF-ß1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-ß1 that is not accessible on GARP- or LRRC33-presented TGF-ß1, explaining the antibody's selectivity for LTBP-complexed TGF-ß1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-ß1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-ß inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-ß1 as an approach for treating fibrosis.


Subject(s)
Extracellular Matrix , Fibrosis , Latent TGF-beta Binding Proteins , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/metabolism , Animals , Humans , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/antagonists & inhibitors , Extracellular Matrix/metabolism , Mice , Male , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Disease Progression , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL
2.
Int J Toxicol ; 40(3): 226-241, 2021.
Article in English | MEDLINE | ID: mdl-33739172

ABSTRACT

Checkpoint inhibitors offer a promising immunotherapy strategy for cancer treatment; however, due to primary or acquired resistance, many patients do not achieve lasting clinical responses. Recently, the transforming growth factor-ß (TGFß) signaling pathway has been identified as a potential target to overcome primary resistance, although the nonselective inhibition of multiple TGFß isoforms has led to dose-limiting cardiotoxicities. SRK-181 is a high-affinity, fully human antibody that selectively binds to latent TGFß1 and inhibits its activation. To support SRK-181 clinical development, we present here a comprehensive preclinical assessment of its pharmacology, pharmacokinetics, and safety across multiple species. In vitro studies showed that SRK-181 has no effect on human platelet function and does not induce cytokine release in human peripheral blood. Four-week toxicology studies with SRK-181 showed that weekly intravenous administration achieved sustained serum exposure and was well tolerated in rats and monkeys, with no treatment-related adverse findings. The no-observed-adverse-effect levels levels were 200 mg/kg in rats and 300 mg/kg in monkeys, the highest doses tested, and provide a nonclinical safety factor of up to 813-fold (based on Cmax) above the phase 1 starting dose of 80 mg every 3 weeks. In summary, the nonclinical pharmacology, pharmacokinetic, and toxicology data demonstrate that SRK-181 is a selective inhibitor of latent TGFß1 that does not produce the nonclinical toxicities associated with nonselective TGFß inhibition. These data support the initiation and safe conduct of a phase 1 trial with SRK-181 in patients with advanced cancer.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Neoplasm Metastasis/drug therapy , Transforming Growth Factor beta1/adverse effects , Transforming Growth Factor beta1/therapeutic use , Animals , Cells, Cultured/drug effects , Disease Models, Animal , Humans , Immunotherapy/methods , Macaca fascicularis , Rats
3.
Sci Transl Med ; 12(536)2020 03 25.
Article in English | MEDLINE | ID: mdl-32213632

ABSTRACT

Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-ß (TGFß) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFß signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFß isoforms. Analysis of mRNA expression data from The Cancer Genome Atlas revealed that TGFΒ1 is the most prevalent TGFß isoform expressed in many types of human tumors, suggesting that TGFß1 may be a key contributor to primary CBT resistance. To test whether selective TGFß1 inhibition is sufficient to overcome CBT resistance, we generated a high-affinity, fully human antibody, SRK-181, that selectively binds to latent TGFß1 and inhibits its activation. Coadministration of SRK-181-mIgG1 and an anti-PD-1 antibody in mice harboring syngeneic tumors refractory to anti-PD-1 treatment induced profound antitumor responses and survival benefit. Specific targeting of TGFß1 was also effective in tumors expressing more than one TGFß isoform. Combined SRK-181-mIgG1 and anti-PD-1 treatment resulted in increased intratumoral CD8+ T cells and decreased immunosuppressive myeloid cells. No cardiac valvulopathy was observed in a 4-week rat toxicology study with SRK-181, suggesting that selectively blocking TGFß1 activation may avoid dose-limiting toxicities previously observed with pan-TGFß inhibitors. These results establish a rationale for exploring selective TGFß1 inhibition to overcome primary resistance to CBT.


Subject(s)
Neoplasms , Transforming Growth Factor beta/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes , Cardiotoxicity , Cell Line, Tumor , Humans , Mice , Neoplasms/drug therapy , Rats , Signal Transduction
4.
PLoS Pathog ; 14(10): e1007305, 2018 10.
Article in English | MEDLINE | ID: mdl-30312351

ABSTRACT

For many pathogens, including most targets of effective vaccines, infection elicits an immune response that confers significant protection against reinfection. There has been significant debate as to whether natural Mycobacterium tuberculosis (Mtb) infection confers protection against reinfection. Here we experimentally assessed the protection conferred by concurrent Mtb infection in macaques, a robust experimental model of human tuberculosis (TB), using a combination of serial imaging and Mtb challenge strains differentiated by DNA identifiers. Strikingly, ongoing Mtb infection provided complete protection against establishment of secondary infection in over half of the macaques and allowed near sterilizing bacterial control for those in which a secondary infection was established. By contrast, boosted BCG vaccination reduced granuloma inflammation but had no impact on early granuloma bacterial burden. These findings are evidence of highly effective concomitant mycobacterial immunity in the lung, which may inform TB vaccine design and development.


Subject(s)
Coinfection/immunology , Mycobacterium tuberculosis/immunology , Pneumonia/prevention & control , Tuberculosis Vaccines/administration & dosage , Tuberculosis, Pulmonary/prevention & control , Animals , Macaca , Pneumonia/immunology , Pneumonia/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Vaccination
5.
mBio ; 8(3)2017 05 09.
Article in English | MEDLINE | ID: mdl-28487426

ABSTRACT

Infection with Mycobacterium tuberculosis causes a spectrum of outcomes; the majority of individuals contain but do not eliminate the infection, while a small subset present with primary active tuberculosis (TB) disease. This variability in infection outcomes is recapitulated at the granuloma level within each host, such that some sites of infection can be fully cleared while others progress. Understanding the spectrum of TB outcomes requires new tools to deconstruct the mechanisms underlying differences in granuloma fate. Here, we use novel genome-encoded barcodes to uniquely tag individual M. tuberculosis bacilli, enabling us to quantitatively track the trajectory of each infecting bacterium in a macaque model of TB. We also introduce a robust bioinformatics pipeline capable of identifying and counting barcode sequences within complex mixtures and at various read depths. By coupling this tagging strategy with serial positron emission tomography coregistered with computed tomography (PET/CT) imaging of lung pathology in macaques, we define a lesional map of M. tuberculosis infection dynamics. We find that there is no significant infection bottleneck, but there are significant constraints on productive bacterial trafficking out of primary granulomas. Our findings validate our barcoding approach and demonstrate its utility in probing lesion-specific biology and dissemination. This novel technology has the potential to greatly enhance our understanding of local dynamics in tuberculosis.IMPORTANCE Classically, M. tuberculosis infection was thought to result in either latent infection or active disease. More recently, the field has recognized that there is a spectrum of M. tuberculosis infection clinical outcomes. Within a single host, this spectrum is recapitulated at the granuloma level, where there can simultaneously be lesional sterilization and poorly contained disease. To better understand the lesional biology of TB infection, we digitally barcoded M. tuberculosis to quantitatively track the fate of each infecting bacterium. By combining this technology with serial PET-CT imaging, we can dynamically track both bacterial populations and granuloma trajectories. We demonstrate that there is little constraint on the bacterial population at the time of infection. However, the granuloma imposes a strong bottleneck on dissemination, and the subset of granulomas at risk of dissemination can be distinguished by physical features.


Subject(s)
Granuloma/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Animals , Computational Biology , Humans , Latent Tuberculosis/microbiology , Lung/microbiology , Macaca fascicularis , Models, Animal , Positron Emission Tomography Computed Tomography
6.
Semin Immunopathol ; 38(2): 213-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26577238

ABSTRACT

The granuloma is the defining feature of the host response to infection with Mycobacterium tuberculosis (Mtb). Despite knowing of its existence for centuries, much remains unclear regarding the host and bacterial factors that contribute to granuloma formation, heterogeneity of presentation, and the forces at play within. Mtb is highly adapted to life within the granuloma and employs many unique strategies to both create a niche within the host as well as survive the stresses imposed upon it. Adding to the complexity of the granuloma is the vast range of pathology observed, often within the same individual. Here, we explore some of the many ways in which Mtb crafts the immune response to its liking and builds a variety of granuloma features that contribute to its survival. We also consider the multitude of ways that Mtb is adapted to life in the granuloma and how variability in the deployment of these strategies may result in different fates for both the bacterium and the host. It is through better understanding of these complex interactions that we may begin to strategize novel approaches for tuberculosis treatments.


Subject(s)
Granuloma/etiology , Granuloma/pathology , Host-Pathogen Interactions , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Tuberculosis/pathology , Adaptation, Biological , Animals , Antigens, Bacterial/immunology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , DNA Methylation , Disease Progression , Energy Metabolism , Exosomes/metabolism , Genetic Predisposition to Disease , Granuloma/metabolism , Host-Pathogen Interactions/immunology , Humans , Immune System/cytology , Immune System/immunology , Immune System/microbiology , Immune System/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Mycobacterium tuberculosis/drug effects , Necrosis , Oxidative Stress , Phenotype , Tuberculosis/complications , Tuberculosis/metabolism
7.
PLoS Pathog ; 11(5): e1004849, 2015 May.
Article in English | MEDLINE | ID: mdl-25945999

ABSTRACT

The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Animals , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Interferon-gamma/immunology , Mice, Inbred C57BL
8.
Curr Opin Microbiol ; 17: 17-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24581688

ABSTRACT

Phagocytic leukocytes, predominantly macrophages, not only ingest and destroy invading pathogens, but are charged with clearing dead and dying host cells. The process of engulfing apoptotic cells is called efferocytosis and has long been appreciated for its role in the resolution of inflammation. New evidence is emerging that efferocytosis represents a double-edged sword in microbial immunity. Although efferocytosis of influenza and Mycobacterium tuberculosis-infected cells results in pathogen destruction, efferocytosis of Leishmania-infected neutrophils may promote infection. Understanding how macrophages, dendritic cells (DC) and neutrophils process pathogens encased within a dying cell could lead to the development of novel therapeutics that simultaneously suppress inflammation and promote pathogen clearance.


Subject(s)
Host-Pathogen Interactions , Macrophages , Phagocytosis , Animals , Bacteria , Dendritic Cells , Humans , Leishmania , Mice , Models, Immunological , Neutrophils
9.
Cell Host Microbe ; 12(3): 289-300, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22980326

ABSTRACT

Mycobacterium tuberculosis persists within macrophages in an arrested phagosome and depends upon necrosis to elude immunity and disseminate. Although apoptosis of M. tuberculosis-infected macrophages is associated with reduced bacterial growth, the bacteria are relatively resistant to other forms of death, leaving the mechanism underlying this observation unresolved. We find that after apoptosis, M. tuberculosis-infected macrophages are rapidly taken up by uninfected macrophages through efferocytosis, a dedicated apoptotic cell engulfment process. Efferocytosis of M. tuberculosis sequestered within an apoptotic macrophage further compartmentalizes the bacterium and delivers it along with the apoptotic cell debris to the lysosomal compartment. M. tuberculosis is killed only after efferocytosis, indicating that apoptosis itself is not intrinsically bactericidal but requires subsequent phagocytic uptake and lysosomal fusion of the apoptotic body harboring the bacterium. While efferocytosis is recognized as a constitutive housekeeping function of macrophages, these data indicate that it can also function as an antimicrobial effector mechanism.


Subject(s)
Apoptosis , Macrophages/immunology , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Phagocytosis , Animals , Cells, Cultured , Immune Evasion , Lysosomes/metabolism , Lysosomes/microbiology , Mice , Mice, Inbred C57BL , Microbial Viability , Microscopy, Electron, Transmission , Microscopy, Fluorescence
10.
Microbes Infect ; 13(8-9): 749-56, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21458584

ABSTRACT

Eicosanoids regulate whether human and murine macrophages infected with Mycobacterium tuberculosis die by apoptosis or necrosis. The death modality is important since apoptosis is associated with diminished pathogen viability and should be viewed as a form of innate immunity. Apoptotic vesicles derived from infected macrophages are also an important source of bacterial antigens that can be acquired by dendritic cells to prime antigen-specific T cells. This review integrates in vitro and in vivo data on how apoptosis of infected macrophages is linked to development of T cell immunity against M. tuberculosis.


Subject(s)
Apoptosis/immunology , Eicosanoids/immunology , Tuberculosis/immunology , Animals , Host-Pathogen Interactions/immunology , Humans , Immunity, Cellular/immunology , Macrophages/immunology , Mice , Mycobacterium tuberculosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...