Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 42(5): 1645-1656, 2019 05.
Article in English | MEDLINE | ID: mdl-30506732

ABSTRACT

Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome "wings" and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2 O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this "atmospheric" epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low-shoot xylem hydraulic conductivities.


Subject(s)
Tillandsia , Trichomes/physiology , Water/physiology , Biological Transport , Dehydration
2.
AoB Plants ; 72015 Sep 10.
Article in English | MEDLINE | ID: mdl-26359490

ABSTRACT

Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5-35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period.

3.
J Plant Physiol ; 170(1): 70-3, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23000465

ABSTRACT

It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues.


Subject(s)
Photosynthesis/physiology , Plant Leaves/physiology , Tillandsia/physiology , Water/physiology , Absorption , Atmosphere , Biological Transport , Chlorophyll/metabolism , Fluorescence , Humidity , Plant Epidermis/physiology , Pressure , Steam
4.
J Exp Bot ; 63(8): 2909-19, 2012 May.
Article in English | MEDLINE | ID: mdl-22330897

ABSTRACT

Mitochondria are important in the function and control of Crassulacean acid metabolism (CAM) during organic acid accumulation at night and acid decarboxylation in the day. In plants of the malic enzyme-(ME) type and the phosphoenolpyruvate carboxykinase- (PEPCK) type, mitochondria may exert their role in the control of the diurnal rhythm of malic and citric acids to a differential degree. In plants of both CAM types, the oxidative capacity of mitochondria, as well as the activity of CAM-linked mitochondrial enzymes, and of the alternative and the rotenone-resistant pathways of substrate oxidation were compared. Furthermore, a C3 succulent was included, as well as both C3 and CAM forms of Mesembryanthemum crystallinum during a salt-induced C3-to-CAM shift. Mitochondria of PEPCK-type CAM plants exhibited a lower activity of malate oxidation, ratio of malate to succinate oxidation, and activity of mitochondrial NAD-ME. With the exception of Kalanchoë daigremontiana, leaf mitochondria of all other CAM species were highly sensitive to cyanide (80-100%), irrespective of the oxidant used. This indicates that the alternative oxidase is not of general importance in CAM. By contrast, rotenone-insensitive substrate oxidation was very high (50-90%) in all CAM species. This is the first comparison of the rotenone-insensitive pathway of respiration in plants with different CAM-types. The results of this study confirm that mitochondria are involved in the control of CAM to different degrees in the two CAM types, and they highlight the multiple roles of mitochondria in CAM.


Subject(s)
Cytochromes/metabolism , Malate Dehydrogenase/metabolism , Metabolic Networks and Pathways/drug effects , Mitochondria/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Plants/enzymology , Rotenone/pharmacology , Acetyl Coenzyme A/pharmacology , Carboxylic Acids , Cell Respiration/drug effects , Cyanides/toxicity , Magnesium/pharmacology , Malates/metabolism , Manganese/pharmacology , Mitochondria/drug effects , Mitochondria/enzymology , NAD/metabolism , NADP/metabolism , Osmosis/drug effects , Oxidation-Reduction/drug effects , Oxygen Consumption/drug effects , Plants/drug effects , Pyruvates/pharmacology , Species Specificity , Succinic Acid/metabolism
5.
J Exp Bot ; 59(7): 1863-73, 2008.
Article in English | MEDLINE | ID: mdl-18436541

ABSTRACT

An omni-directional fibre optic microprobe was used to measure the quantity and quality of light within the leaves of six succulents having epidermal windows, three species having a subterranean growth habit (Haworthia truncata, Lithops olivacea, and Opthalmophyllum longum) and three growing above ground (Peperomia dolabriformis, P. graveolens, and the sprawling vine Senecio rowleyanus). Although light levels at most locations inside the leaves of all species were high, near those incident on the window surfaces, light levels inside the leaves of the two species of Peperomia often greatly exceeded incident light levels, indicating considerable light scattering and focusing by the leaf tissue. The spectral quality of light inside the leaves of all taxa reflected the absorption properties of chlorophyll, with most of the photons in the green wavelengths. Light quality and quantity inside the leaves did not correlate with the growth habit of the plants, the size of the window (as a proportion of the total leaf area), or location inside the leaf, although light levels generally declined and wavelengths increased deeper in the leaves. Application of reflective tape to the windows reduced internal light levels in L. olivacea and S. rowleyanus, although reductions were not always statistically significant. Although light levels throughout the leaves of P. graveolens were substantially and significantly reduced as a result of the application of reflective tape to its windows, the light levels even at the basal chlorenchyma on the abaxial side of the leaf remained high. In all species investigated, the levels of near-infrared radiation inside the leaves were surprisingly high, yet also declined deeper inside the succulent leaves. This near-infrared radiation may add to the heat load of these plants. Furthermore, application of reflective tape to the windows also reduced the amount of near-infrared radiation inside the leaves of the three succulents examined. These results led to a novel, testable hypothesis that may help to explain previous findings that application of reflective tape to the windows of the leaves of these succulents did not effect a reduction in photosynthetic activity.


Subject(s)
Magnoliopsida/anatomy & histology , Magnoliopsida/metabolism , Plant Leaves/anatomy & histology , Light , Photosynthesis/physiology , Plant Leaves/metabolism , Species Specificity
6.
J Plant Physiol ; 163(6): 648-56, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16545998

ABSTRACT

We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.


Subject(s)
Carbon Dioxide/physiology , Plant Leaves/physiology , Tillandsia/physiology , Water/physiology , Circadian Rhythm/physiology , Microscopy, Electron, Scanning , Plant Leaves/ultrastructure , Tillandsia/ultrastructure
7.
J Plant Physiol ; 161(10): 1119-24, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15535121

ABSTRACT

Past reports of the water relations of epiphytes, particularly bromeliads, indicate that tissue osmotic potentials in these tropical and subtropical plants are very high (close to zero) and are similar to values for aquatic plants. This is puzzling because several ecophysiological studies have revealed a high degree of drought stress tolerance in some of these epiphytes. The goal of this study was two-fold: (1) to increase the number of epiphytic taxa sampled for tissue osmotic potentials; and (2) to explain the apparent discrepancy in the significance of the tissue water relations and tolerance of drought stress in epiphytes. Tissue osmotic potentials of 30 species of epiphytic ferns, lycophytes, and orchids were measured in a subtropical rain forest in northeastern Taiwan. Nearly all values were less negative than -1.0 MPa, in line with all previous data for epiphytes. It is argued that such high osmotic potentials, indicative of low solute concentrations, are the result of environmental constraints of the epiphytic habitat on productivity of these plants, and that low rates of photosynthesis and transpiration delay the onset of turgor loss in the tissues of epiphytes such that they appear to be very drought-stress tolerant. Maintenance of photosynthetic activity long into drought periods is ascribed to low rates of transpiration and, hence, delayed tissue desiccation, and hydration of the photosynthetic tissue at the expense of water from the water-storage parenchyma.


Subject(s)
Ferns/metabolism , Lycopodium/metabolism , Orchidaceae/metabolism , Osmotic Pressure , Selaginellaceae/metabolism , Environment , Water
8.
Am J Bot ; 80(5): 533-536, 1993 May.
Article in English | MEDLINE | ID: mdl-30139151

ABSTRACT

Plants (N = 102) from 23 populations of Talinum, representing five morphologically similar species, were examined in a test of the hypothesis that ploidal level may be correlated with levels of Crassulacean acid metabolism. When grouped by species and ploidal level, two groups of tetraploid plants, T. calcaricum and tetraploid individuals of T. calycinum, had significantly greater malic acid accumulations than any other group, including diploid individuals of T. calycinum. Another tetraploid, T. teretifolium, did not show greater malic acid fluctuations than the diploids, including two putative ancestors (T. mengesii and T. parviflorum). Similarly, malic acid fluctuations in tetraploid individuals of T. parviflorum were not different from diploid individuals of the same species. Nonetheless, when all plants were compared, nocturnal accumulations of malic acid in tetraploid plants were significantly greater than those of diploid plants.

9.
Oecologia ; 92(4): 532-541, 1992 Dec.
Article in English | MEDLINE | ID: mdl-28313224

ABSTRACT

Gas exchange patterns, diurnal malic acid fluctuations, and stable carbon isotope ratios of five species of Sedum were investigated to assess the ecophysiological characteristics of three different photosynthetic pathways under well-watered and drought-stressed conditions. All five species have succulent leaves and stems and were examined under identical environmental conditions. When well-watered, Sedum integrifolium (Raf.) Nels. and S. ternatum Michx. displayed C3 photosynthesis, S. telephioides Michx. and S. nuttallianum Raf. exhibited CAM-cycling, and S. wrightii A. Gray showed CAM. When grown under a less frequent watering regime, S. integrifolium and S. ternatum exhibited CAM-cycling, whereas S. telephioides and S. nuttallianum displayed CAM-cycling simultaneously with low-level CAM. Sedum wrightii retained its CAM mode of photosynthesis. In general, leaf δ13C values reflected these variations in photosynthetic pathways. While all values of water-use efficiency (WUE) were greater than those reported for most C3 and C4 species, no correlation of malic acid accumulation in the CAM and CAM-cycling (including low-level CAM) species with increased WUE was found. Sedum wrightii (CAM) had the highest WUE value at night, yet its 24-h WUE was not different from S. ternatum when the latter was in the C3 mode. Thus, relative water-use efficiencies of these species of Sedum were not predictable based on photosynthetic pathways alone.

10.
Oecologia ; 86(4): 575-584, 1991 May.
Article in English | MEDLINE | ID: mdl-28313340

ABSTRACT

The degree of CAM-cycling was examined in plants from 23 populations representing five morphologically similar species of Talinum to determine how CAM-cycling correlates with site aridity and drought stress. In the field, CAM-cycling, as indicated by the amount of malic acid accumulated in plant tissues overnight, and stable carbon isotope ratio (δ13C) were positively correlated with an index of site aridity. The relative levels of CAM-cycling and δ13C values among populations in the field reversed when plants were grown under less arid conditions in a growth chamber such that populations with the highest average CAM-cycling and δ13C in the field had the lowest averages in the growth chamber. In both cases, plants from all populations showed significantly higher levels of CAM-cycling under drought-stressed conditions relative to conditions known or predicted to be less arid. CAM-cycling was also positively correlated with tissue water content in both well-watered and drought-stressed plants, possibly reflecting greater water conservation associated with reductions in stomatal conductance. Biomass accumulation in plants exhibiting the greatest degree of CAM-cycling in the growth chamber was suppressed by drought stress to a similar degree as in the other plants, yet reproductive biomass of these plants was inhibited to a smaller degree. Thus, the importance of CAM-cycling increases in these species of Talinum during drought stress, due to increased malic acid accumulation overnight, potentially enhancing their water status, survival, and reproduction.

11.
Oecologia ; 84(1): 99-102, 1990 Aug.
Article in English | MEDLINE | ID: mdl-28312781

ABSTRACT

Using determinations of overnigh changes in tissue titratable acidity and of tissue stable carbon isotope ratios, 10 species of terrestrial succulents were investigatedin situ in southeastern Jamaica for the presence of Crassulacean acid metabolism (CAM). Eight of the 10 species exhibited CAM (sensu lato), confirming past reports of CAM inClusia flava (Clusiaceae),Bryophyllum pinnatum (Crassulaceae),Euphorbia tirucalli (Euphorbiaceae), andPedilanthus tithymaloides (Euphorbiaceae) and extending the number of species with CAM in two genera previously known to contain CAM species (Agave sobolifera [Agavaceae] andSansevieria metalllica [Liliaceae]). Stems of bothE. tirucalli andP. tithymaloides exhibited CAM while the leaves of both species were intermediate with regard to photosynthetic pathway. The lack of CAM acid fluctuations inTalinum paniculatum (Portulacaceae) was surprising given past findings with all other species investigated in this genus. Shoots ofPilea microphylla (Urticaceae) were C3 yet were remarkable in their extremely high pH. Both species require further investigation. Nocturnal acid accumulations indicative of CAM were found inTripogandra multiflora andCallisia fragrans, both members of the Commelinaceae. This represents the first report of CAM (probably "CAM-cycling") in this family.

12.
Oecologia ; 70(2): 298-304, 1986 Sep.
Article in English | MEDLINE | ID: mdl-28311673

ABSTRACT

The heterophyllous epiphyte Tillandsia deppeana exhibits an atmospheric habit as a juvenile and a tank form as an adult. Both juveniles and adults utilize C3 photosynthesis. This is the first report of an atmospheric form of Tillandsia which does not exhibit CAM. Photosynthetic saturation occurred at approximately 10% of full sunlight in both forms, but the adults exhibited greater rates of photosynthesis at all levels of irradiance. The adults also had a higher and broader photosynthetic temperature optimum than did the juveniles. The adults transpired at greater rates than the juveniles; however, the water use efficiencies of both forms were similar and were high for C3 plants. In both forms the photosynthetic rate decreased in response to a decrease in humidity. After 8 days without water the juveniles were able to fix CO2 throughout the day. The adults, however, exhibited a net loss of CO2 on the second day without water and thereafter. These results indicate that the water-conservative atmospheric juvenile of T. deppeana is well adapted to establishment in the epiphytic habitat.

13.
Oecologia ; 49(3): 322-328, 1981 Jul.
Article in English | MEDLINE | ID: mdl-28309990

ABSTRACT

Seasonal patterns of growth, 14CO2 uptake, and fluctuations in tissue titratable acidity were studied over the course of a year at a study site in the coastal plain of North Carolina.Elongation rates of Spanish moss strands were maximal in the summer and minimal in the winter. Summer maximal biomass addition rates were calculated to be 3.4 mg·month-1. Mortality of the strands was greatest in the winter months. Rates of 14CO2 uptake and fluctuations in tissue acidity were greatest in the summer over a fairly broad spectrum of environmental conditions (day and night temperatures, irradiance, length of drought). Maximal 14CO2 uptake rates (1.2 mg CO2·mg Chl-1 ·h01) were measured in May 1978. Rates of 14CO2 uptake and fluctuations in titratable acidity were inhibited below 5°C and eliminated at 0°C air temperatures.Isothermal diurnal conditions resulted in low rates of 14CO2 uptake. Tissue water content did not appear to be a major factor controlling 14CO2 uptake rates. However, tissue wetting by rain severely reduced nighttime uptake yet stimulated low rates of daytime 14CO2 uptake. This was the only condition in which daytime 14CO2 uptake occurred, excluding the early morning and late afternoon 14CO2 uptake typical of many Crassulacean Acid Metabolism (CAM) plants.The results suggest that tissue water content is not the major factor controlling CO2 uptake as has been found in many other CAM species; and that low temperatures limit the growth of Spanish moss in North Carolina.

SELECTION OF CITATIONS
SEARCH DETAIL
...