Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Life Sci ; 82(1-2): 108-14, 2008 Jan 02.
Article in English | MEDLINE | ID: mdl-18048060

ABSTRACT

The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of melatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(- 8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events.


Subject(s)
Circadian Rhythm/physiology , Insulin/pharmacology , Melatonin/biosynthesis , Norepinephrine/pharmacology , Pineal Gland/drug effects , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Animals , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Gene Expression/drug effects , In Vitro Techniques , Insulin/physiology , Male , Norepinephrine/physiology , Pineal Gland/enzymology , Pineal Gland/metabolism , Protein Processing, Post-Translational , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL