Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Vet Surg ; 40(5): 579-85, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21539578

ABSTRACT

OBJECTIVES: To compare the number of cycles to failure of 4.5 mm broad dynamic compression plates (DCP), 4.5 mm broad limited-contact dynamic compression plates (4.5-LC-DCP), and 5.5 mm broad limited-contact dynamic compression plates (5.5-LC-DCP) having a rough (denoted by a prefix R-) versus a standard smooth contact surface for the fixation of osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: Experimental. ANIMAL POPULATION: Fifteen pairs of adult equine cadaveric MC3 bones. METHODS: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for comparison of (1) R-DCP fixation with DCP fixation, (2) R-4.5-LC-DCP fixation with 4.5-LC-DCP fixation, and (3) R-5.5-LC-DCP fixation with 5.5-LC-DCP fixation to repair osteotomized equine MC3 bones under palmarodorsal 4-point bending cyclic fatigue testing. For each group an 8-hole plate with rough contact surface was applied to the dorsal surface of one randomly selected bone from each pair and a corresponding 8-hole plate with smooth contact surface was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid-diaphyseal osteotomies. Mean number of cycles to failure for each method were compared using a paired t-test within each group. Significance was set at P < .05. RESULTS: Mean cycles to failure ± standard deviation was significantly greater for the R-DCP fixation (230,025 ± 23,129) compared with the DCP fixation (103,451 ± 14,556), for the R-4.5-LC-DCP fixation (99,237 ± 14,390) compared with the 4.5-LC-DCP fixation (46,464 ± 6325) and for the R-5.5-LC-DCP fixation (65,113 ± 7796) compared with the 5.5-LC-DCP fixation (34,224 ± 3835). CONCLUSION: For the fixation of osteotomized MC3 bones, the constructs with plates having rough contact surface were superior to the corresponding constructs with plates having standard smooth contact surfaces in resisting cyclic fatigue under palmarodorsal 4-point bending.


Subject(s)
Bone Plates/veterinary , Fracture Fixation, Internal/veterinary , Horses/surgery , Metacarpal Bones/injuries , Osteotomy/veterinary , Animals , Biomechanical Phenomena , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , In Vitro Techniques , Metacarpal Bones/surgery , Prosthesis Design , Prosthesis Failure , Random Allocation
2.
Vet Surg ; 40(5): 571-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21521241

ABSTRACT

OBJECTIVES: To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow locking compression plate (ELCP) using 5.0 mm locking screws and 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (ELCP-TLS) with an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) for equine proximal interphalangeal (PIP) joint arthrodesis. DESIGN: Experimental. ANIMAL POPULATION: Cadaveric adult equine forelimbs (n = 18 pairs). METHODS: For each forelimb pair, 1 PIP joint was stabilized with an axial ELCP using 5.0 mm locking screws and 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 PIP joint with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression, 6 construct pairs were tested for cyclic fatigue under axial compression, and 6 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P < .05. RESULTS: Mean yield load, yield stiffness, and failure load under axial compression, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the LCP-TLS fixation. There was no significant difference between the mean number of cycles to failure in axial compression of the LCP-TLS and the DCP-TLS fixations. Mean yield load, yield stiffness, and failure load under torsion, single cycle to failure, of the LCP-TLS fixation were significantly greater than those of the DCP-TLS fixation. CONCLUSION: The DCP-TLS construct provided significantly greater stability under axial compression in single cycle to failure than the ELCP-TLS construct, the ELCP-TLS construct provided significantly greater stability under torsional loading in single cycle to failure than the DCP-TLS construct, and there was no significant difference in stability between the 2 constructs for cyclic loading under axial compression.


Subject(s)
Arthrodesis/veterinary , Bone Plates/veterinary , Bone Screws/veterinary , Horses/surgery , Toe Joint/surgery , Animals , Arthrodesis/instrumentation , Arthrodesis/methods , Biomechanical Phenomena , Compressive Strength , In Vitro Techniques , Mechanical Phenomena , Toe Joint/physiology , Torsion, Mechanical , Weight-Bearing
3.
Vet Surg ; 40(3): 261-5, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21361995

ABSTRACT

OBJECTIVES: To compare the mean number of cycles to failure under axial compression of equine proximal interphalangeal (PIP) joint arthrodesis constructs created by 2 parallel transarticular Acutrak Plus screws (AP-TS) or 2 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (AO-TLS). STUDY DESIGN: Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. SAMPLE POPULATION: Cadaveric adult equine forelimbs (n=5 pairs). METHODS: For each forelimb pair, 1 PIP joint was stabilized with AP-TS and 1 with AP-TLS. The 5 construct pairs were tested for cyclic fatigue under axial compression. Mean number of cycles to failure for each fixation method were compared by a paired t-test within each group with statistical significance set at P<.05. RESULTS: The mean number of cycles to failure under axial compression for AO-TLS fixation and AP-TS fixation were 57,723±8488 and 35,322±4698, respectively. CONCLUSION: The AO-TLS was superior to the AP-TS in resisting cyclic fatigue under axial compression.


Subject(s)
Arthrodesis/veterinary , Bone Screws/veterinary , Horses/surgery , Toe Joint/surgery , Animals , Arthrodesis/instrumentation , Arthrodesis/methods , Cadaver , Forelimb/surgery
4.
Vet Surg ; 39(7): 833-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20459499

ABSTRACT

OBJECTIVES: To compare number of cycles to failure for palmarodorsal 4-point bending of a modified 5.5 mm broad locking compression plate (M5.5-LCP) fixation with a 5.5 mm broad LCP (5.5-LCP) fixation used to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=6 pairs). METHODS: An 8-hole, M5.5-LCP, obtained by having a 1.0 mm thickness removed from the bone contact portion of the 5.5-LCP, was applied to the dorsal surface of 1 randomly selected MC3 from each pair, and an 8-hole, 5.5-LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. Plates and screws were applied using standard ASIF techniques to MC3 bones with a mid-diaphyseal osteotomy. MC3 constructs had palmarodorsal 4-point bending cyclic fatigue testing. Mean cycles to failure for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean±SD cycles to failure of the M5.5-LCP fixation (188,641±17,971) was significantly greater than that of the 5.5-LCP fixation (166,497±15,539). CONCLUSION: M5.5-LCP fixation was superior to 5.5-LCP fixation of osteotomized equine MC3 bones in resisting cyclic fatigue under palmarodorsal 4-point bending. CLINICAL RELEVANCE: This suggests that biological plate fixation is not the ideal choice for osteotomized equine MC3 bones.


Subject(s)
Bone Plates/veterinary , Fracture Fixation, Internal/veterinary , Horses/surgery , Internal Fixators/veterinary , Metacarpal Bones/surgery , Animals , Biomechanical Phenomena , Compressive Strength , Fracture Fixation, Internal/methods , Materials Testing/veterinary , Osteotomy/veterinary
5.
Vet Surg ; 39(5): 581-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20459505

ABSTRACT

OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a 5.5-mm-broad locking compression plate (5.5 LCP) fixation with a 4.5-mm-broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Fifteen pairs of adult equine cadaveric MC3 bones. METHODS: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8-hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8-hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group with significance set at P<.05. RESULTS: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4-point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4-point bending of the 5.5 LCP fixation (170,535+/-19,166) was significantly greater than that of the 4.5 LCP fixation (129,629+/-14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean+/-SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4+/-19.6 and 97.6+/-12.1 N m; composite rigidity, 790.3+/-58.1 and 412.3+/-28.1 N m/rad; and failure load: 162.1+/-20.2 and 117.9+/-14.6 N m. CONCLUSION: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4-point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4-point bending. CLINICAL RELEVANCE: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.


Subject(s)
Bone Plates/veterinary , Horses/surgery , Metacarpal Bones/surgery , Osteotomy/veterinary , Animals , Biomechanical Phenomena , In Vitro Techniques , Torsion, Mechanical , Weight-Bearing
6.
Vet Surg ; 39(1): 83-90, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20210950

ABSTRACT

OBJECTIVES: To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. STUDY DESIGN: Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. SAMPLE POPULATION: Cadaveric adult equine forelimbs (n=15 pairs). METHODS: For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. RESULTS: Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. CONCLUSION: The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. CLINICAL RELEVANCE: The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.


Subject(s)
Arthrodesis/veterinary , Bone Plates/veterinary , Bone Screws/veterinary , Horses/surgery , Toe Joint/surgery , Animals , Arthrodesis/instrumentation , Arthrodesis/methods , Biomechanical Phenomena/physiology , Compressive Strength/physiology , Equipment Failure/veterinary , Forelimb , Horse Diseases/physiopathology , Horse Diseases/surgery , Horses/physiology , In Vitro Techniques , Toe Joint/physiology , Torsion, Mechanical
7.
Vet Surg ; 37(3): 283-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18394076

ABSTRACT

OBJECTIVE: To compare monotonic biomechanical properties and fatigue life of a broad locking compression plate (LCP) fixation with a broad limited contact dynamic compression plate (LC-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Cadaveric adult equine MC3 bones (n=12 pairs). METHODS: MC3 were divided into 3 groups (4 pairs each) for: (1) 4-point bending single cycle to failure testing; (2) 4-point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8-hole, 4.5 mm LCP was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8-hole, 4.5 mm LC-DCP) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment, under 4-point bending, single cycle to failure, of the LCP fixation were significantly greater than those of the LC-DCP fixation. Mean cycles to failure for 4-point bending was significantly greater for the LCP fixation compared with LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad LCP fixation compared with the LC-DCP fixation. CONCLUSION: The 4.5 mm LCP was superior to the 4.5 mm LC-DCP in resisting the static overload forces (palmarodorsal 4-point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4-point bending. CLINICAL RELEVANCE: The results of this in vitro study may provide information to aid in the selection of a biological plate for the repair of equine long bone fractures.


Subject(s)
Bone Plates/veterinary , Fracture Fixation, Internal/veterinary , Internal Fixators/veterinary , Metacarpal Bones/injuries , Metacarpal Bones/surgery , Animals , Biomechanical Phenomena , Cadaver , Compressive Strength , Equipment Failure/veterinary , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Horses , Osteotomy/methods , Osteotomy/veterinary , Random Allocation
8.
Vet Surg ; 37(3): 289-93, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18394077

ABSTRACT

OBJECTIVES: To compare monotonic biomechanical properties and fatigue life of a 5.5 mm broad limited-contact dynamic compression plate (5.5-LC-DCP) fixation with a 4.5 mm broad LC-DCP (4.5-LC-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. SAMPLE POPULATION: Adult equine cadaveric MC3 bones (n=18 pair). METHODS: MC3 were divided into 3 test groups (6 pairs each) for: (1) 4-point bending single cycle to failure testing; (2) 4-point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8-hole, 5.5 mm broad LC-DCP (5.5-LC-DCP) was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8-hole, 4.5 mm broad LC-DCP (4.5-LC-DCP) was applied dorsally to the contralateral bone from each pair. Plates and screws were applied using standard ASIF techniques. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment under 4-point bending, single cycle to failure, of the 5.5-LC-DCP fixation were significantly greater (P<.024) than those of the 4.5-LC-DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.05) greater for the 4.5-LC-DCP fixation compared with the 5.5-LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion for the 5.5-LC-DCP fixation was not significantly different (P>.05) than those with the 4.5-LC-DCP fixation. CONCLUSION: 5.5-LC-DCP fixation was superior to 4.5-LC-DCP fixation in resisting the static overload forces under palmarodorsal 4-point bending. There was no significant difference between 5.5-LC-DCP fixation and 4.5-LC-DCP fixation in resisting static overload forces under torsion; however, the 5.5-LC-DCP offers significantly less stability (80% of that of the 4.5-LC-DCP) in cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study may provide information to aid in the selection of a biological plate for long bone fracture repair in horses.


Subject(s)
Bone Plates/veterinary , Compressive Strength , Fracture Fixation, Internal/veterinary , Internal Fixators/veterinary , Metacarpal Bones/injuries , Metacarpal Bones/surgery , Animals , Biomechanical Phenomena , Bone Plates/standards , Cadaver , Equipment Failure/veterinary , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Horses , Osteotomy/methods , Osteotomy/veterinary , Random Allocation
9.
Vet Surg ; 36(8): 792-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18067621

ABSTRACT

OBJECTIVES: To compare in vitro monotonic biomechanical properties of an equine spoon plate (ESP) with an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws (DCP-TLS) inserted in lag fashion for equine proximal interphalangeal (PIP) joint arthrodesis. STUDY DESIGN: Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. ANIMAL POPULATION: Cadaveric adult equine forelimbs (n=18 pairs). METHODS: For each forelimb pair, 1 PIP joint was stabilized with an ESP (8 hole, 4.5 mm) and 1 with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression with load applied under displacement control at a constant rate of 5 cm/s. Six construct pairs were tested for cyclic fatigue under axial compression with cyclic load (0-7.5 kN) applied at 6 Hz; cycles to failure were recorded. Six construct pairs were tested in single cycle to failure under torsional loading applied at a constant displacement rate (0.17 radians/s) until rotation of 0.87 radians occurred. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. RESULTS: Mean yield load, yield stiffness, and failure load for ESP fixation were significantly greater (for axial compression and torsion) than for DCP-TLS fixation. Mean (+/- SD) values for the ESP and DCP-TLS fixation techniques, respectively, in single cycle to failure under axial compression were: yield load 123.9 +/- 8.96 and 28.5 +/- 3.32 kN; stiffness, 13.11 +/- 0.242 and 2.60 +/- 0.17 kN/cm; and failure load, 144.4 +/- 13.6 and 31.4 +/- 3.8 kN. In single cycle to failure under torsion, mean (+/- SD) values for ESP and DCP-TLS, respectively, were: stiffness 2,022 +/- 26.2 and 107.9 +/- 11.1 N m/rad; and failure load: 256.4 +/- 39.2 and 87.1 +/- 11.5 N m. Mean cycles to failure in axial compression of ESP fixation (622,529 +/- 65,468) was significantly greater than DCP-TLS (95,418 +/- 11,037). CONCLUSION: ESP was superior to an axial 3-hole narrow DCP with 2 abaxial transarticular screws inserted in lag fashion in resisting static overload forces and cyclic fatigue. CLINICAL RELEVANCE: In vitro results support further evaluation of ESP for PIP joint arthrodesis in horses. Its specific design may provide increased stability without need for external coaptation support.


Subject(s)
Arthrodesis/veterinary , Fracture Fixation, Internal/veterinary , Fractures, Bone/veterinary , Horses/injuries , Horses/surgery , Toe Joint/surgery , Animals , Arthrodesis/instrumentation , Arthrodesis/methods , Biomechanical Phenomena , Bone Nails/veterinary , Bone Plates/veterinary , Bone Screws/veterinary , Cadaver , Compressive Strength , Forelimb , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Fractures, Bone/surgery , Stress, Mechanical
10.
Vet Surg ; 35(7): 634-42, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17026548

ABSTRACT

OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.


Subject(s)
Bone Screws/veterinary , Fracture Fixation, Internal/veterinary , Fractures, Bone/veterinary , Metacarpal Bones/surgery , Osteotomy/veterinary , Animals , Biomechanical Phenomena , Bone Plates/standards , Bone Plates/veterinary , Bone Screws/standards , Cadaver , Compressive Strength , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/standards , Fractures, Bone/surgery , Horses , Internal Fixators/standards , Internal Fixators/veterinary , Osteotomy/methods , Random Allocation , Stress, Mechanical , Torsion Abnormality
11.
Vet Surg ; 34(6): 594-603, 2005.
Article in English | MEDLINE | ID: mdl-16343147

ABSTRACT

OBJECTIVES: To compare the monotonic biomechanical properties of a prototype equine third metacarpal dynamic compression plate (EM-DCP) fixation with a double broad dynamic compression plate (DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional testing. The EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of one randomly selected bone from each pair. Two DCPs, 1 dorsally (10-hole, 4.5 mm broad) and 1 laterally (9-hole, 4.5 mm broad) were applied to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the EM-DCP fixation were significantly greater (P<.0001) than those of the double broad DCP fixation. Mean cycles to failure in 4-point bending of the EM-DCP fixation was significantly greater (P<.0008) than that of the double broad DCP fixation. Mean yield load, composite rigidity, and failure load in torsion of the EM-DCP fixation were significantly greater (P<.0035) than that of the double broad DCP fixation. CONCLUSION: The EM-DCP provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: Results of this in vitro study support the conclusion that the prototype EM-DCP fixation is biomechanically superior to the double broad DCP fixation for the stabilization of osteotomized equine MC3.


Subject(s)
Fracture Fixation, Internal/veterinary , Fractures, Bone/veterinary , Horses/injuries , Metacarpal Bones/injuries , Metacarpal Bones/surgery , Osteotomy/veterinary , Animals , Biomechanical Phenomena , Bone Nails/veterinary , Bone Plates/veterinary , Cadaver , Compressive Strength/physiology , Fracture Fixation, Internal/methods , Fractures, Bone/surgery , Horses/surgery , Osteotomy/methods , Random Allocation , Torsion Abnormality/veterinary
12.
Vet Surg ; 34(6): 579-86, 2005.
Article in English | MEDLINE | ID: mdl-16343145

ABSTRACT

OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a broad, limited contact, dynamic compression plate (LC-DCP) fixation with a broad, dynamic compression plate (DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An LC-DCP (8-hole, 4.5 mm) was applied to the dorsal surface of 1 randomly selected bone from each pair. One DCP (8-hole, 4.5 mm broad) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean 4-point bending yield load, yield bending moment, composite rigidity, failure load, and failure bending moment of LC-DCP fixation were significantly greater (P<.01) than those of broad DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.001) greater for broad DCP fixation compared with broad LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion was significantly (P<.02) greater for broad LC-DCP fixation compared with broad DCP fixation. CONCLUSION: Broad LC-DCP offers increased stability in static overload testing, however, it offers significantly less stability in cyclic fatigue testing. CLINICAL RELEVANCE: The clinical relevance of the cyclic fatigue data supports the conclusion that the broad DCP fixation is biomechanically superior to the broad LC-DCP fixation in osteotomized equine MC3 bones despite the results of the static overload testing.


Subject(s)
Fractures, Bone/veterinary , Horses/injuries , Metacarpal Bones/injuries , Metacarpal Bones/surgery , Osteotomy/veterinary , Animals , Biomechanical Phenomena , Bone Nails/veterinary , Bone Plates/veterinary , Cadaver , Compressive Strength , Fracture Fixation, Internal/veterinary , Fractures, Bone/surgery , Horses/surgery , Osteotomy/methods , Random Allocation , Torsion Abnormality/veterinary
13.
Vet Surg ; 34(6): 587-93, 2005.
Article in English | MEDLINE | ID: mdl-16343146

ABSTRACT

OBJECTIVES: To evaluate the effects of plate luting on the biomechanical properties of a broad limited contact-dynamic compression plate (LC-DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by LC-DCP fixation, with 1 of the pair luted with polymethylmethacrylate (PMMA). ANIMAL POPULATION: Ten pairs of adult equine cadaveric MC3 bones. METHODS: Ten pairs of equine MC3 were divided into 2 test groups (5 pairs each) for (1) palmarodorsal 4-point bending single cycle to failure testing and (2) palmarodorsal 4-point bending cyclic fatigue testing. The LC-DCP (8 hole, 4.5 mm) was applied to the dorsal surface of each pair of MC3 bones. All plates and screws were applied using standard AO/ASIF techniques. All MC3 bones had mid-diaphyseal osteotomies. One of the matched pairs of LC-DCP-MC3 constructs were randomly chosen to be luted with PMMA. Mean test variable values for each method were compared using a paired t-test within each group; significance was set at P<.05. RESULTS: Mean palmarodorsal 4-point bending yield bending moment, failure bending moment of the LC-DCP fixation with luting was not significantly different (P>.05) than those of the LC-DCP fixation without luting. Mean cycles to failure for palmarodorsal 4-point bending was significantly (P<.0003) greater, with a 7.2-fold increase, for the LC-DCP fixation with luting compared with the LC-DCP fixation without luting. CONCLUSION: Luting the broad LC-DCP with PMMA in the fixation osteotomized equine MC3 bones increases the fatigue life of cyclic loading for palmarodorsal 4-point bending under the in vitro conditions studied. CLINICAL RELEVANCE: The cyclic fatigue data supports the conclusion that luted broad LC-DCP fixation is biomechanically superior to the non-luted broad LC-DCP fixation in osteotomized equine MC3 bones.


Subject(s)
Bone Cements/therapeutic use , Horses/injuries , Metacarpal Bones/injuries , Metacarpal Bones/surgery , Osteotomy/veterinary , Polymethyl Methacrylate/therapeutic use , Animals , Biomechanical Phenomena , Bone Nails/veterinary , Bone Plates/veterinary , Cadaver , Compressive Strength/physiology , Fracture Fixation, Internal/veterinary , Fractures, Bone/surgery , Fractures, Bone/veterinary , Horses/surgery , Osteotomy/methods , Random Allocation , Torsion Abnormality/veterinary
14.
Vet Surg ; 33(1): 83-91, 2004.
Article in English | MEDLINE | ID: mdl-14687191

ABSTRACT

OBJECTIVES: To compare the biomechanical properties of a prototype intramedullary pin-plate (IMPP) implant specifically designed for equine metacarpophalangeal (MCP) arthrodesis with a dynamic compression plate (DCP) system. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine forelimbs with a simulated traumatic disruption of the suspensory apparatus, stabilized by one of two methods for MCP arthrodesis. ANIMAL POPULATION: Twenty-one pairs of adult equine cadaveric forelimbs. METHODS: Each forelimb had the distal sesamoidean ligaments severed to create a disrupted suspensory apparatus. For each forelimb pair, the MCP joint was stabilized with the IMPP in one limb, and a DCP in the other limb. Seven matching limb pairs were tested in axial compression in a single cycle to failure, 7 matching limb pairs were tested in torsion in a single cycle to failure, and 7 matching limb pairs were fatigued tested in axial compression. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean yield load, yield stiffness, and failure load (axial compression, torsional loading) was significantly greater for the IMPP compared with the DCP system. Mean cycles to failure for axial compression was significantly greater for the IMPP compared with the DCP system. Significance in all tests was P<.0001. CONCLUSION: The IMPP was superior to the DCP system in resisting the biomechanical forces most likely to cause failure of MCP joint arthrodesis. CLINICAL RELEVANCE: The IMPP implant should be considered for MCP arthrodesis in horses with traumatic disruption of the suspensory apparatus. The specific design of the IMPP implant may facilitate equine MCP arthrodesis and avoid convalescent complications related to cyclic fatigue.


Subject(s)
Bone Nails/veterinary , Bone Plates/veterinary , Fracture Fixation, Intramedullary/veterinary , Fractures, Bone/veterinary , Horses/injuries , Animals , Biomechanical Phenomena , Forelimb/injuries , Forelimb/surgery , Fracture Fixation, Intramedullary/instrumentation , Fractures, Bone/surgery , Horses/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...