Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 12(14): 8656-8660, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424785

ABSTRACT

As the predominant precursor for high-performance carbon fiber manufacturing, the fabrication of polyacrylonitrile (PAN)-based composite fibers attracts great interest. Ionic liquids (ILs) have recently been investigated for melt-spinning of ultrafine PAN fibers. The plasticizing properties of ILs are significantly affected by the structure of ILs and can be influenced by electronegativity, steric effects, etc. Herein, we report a facile strategy to control the elasticity of the PAN/ILs fibers by tuning the anion structure of ILs. Particularly, the ILs containing nitrile-rich groups exhibited enhanced plasticizing effect and nucleating ability on dissolving PAN components, achieving highly stretchable PAN/ILs fibers.

2.
ACS Appl Mater Interfaces ; 12(7): 8663-8673, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31977177

ABSTRACT

The production of high-strength carbon fibers is an energy-intensive process, where a significant cost involves the wet or dry-spinning of polyacrylonitrile (PAN) fiber precursors. Melt-spinning PAN fibers would allow for significant reduction in the production cost and production hazards. Ionic liquids (ILs) are an attractive fiber-processing medium because of their negligible vapor pressure and low toxicity. In addition, they are carbon-forming precursors; upon carbonization, residual ILs can enhance the carbon yield, although primarily useful for plasticized melt-spinning of PAN precursor fibers. In this research, we investigated the influence of the molecular structure of ILs and the control of plasticizing interactions with PAN during melt-spinning. The structural, thermal, and mechanical properties of the melt-spun PAN fibers were obtained by a combination of various characterization methods, such as differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and mechanical testing. These results demonstrated that the IL structure and counteranions influence the PAN fiber formation. More specifically, ILs containing bromide counteranions produced PAN precursor fibers with increased mechanical properties compared to ILs containing chloride anions. Our research can provide a foundation to understand the influence of ILs on melt-spinning of PAN fibers and provides us the guidelines for a higher cost-/energy-efficient production of PAN-based carbon fibers.

3.
ChemSusChem ; 13(23): 6381-6390, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33411422

ABSTRACT

Direct air capture (DAC) technologies that extract carbon dioxide from the atmosphere via chemical processes have the potential to restore the atmospheric CO2 concentration to an optimal level. This study elucidates structure-property relationships in DAC by crystallization of bis(iminoguanidine) (BIG) carbonate salts. Their crystal structures are analyzed by X-ray and neutron diffraction to accurately measure key structural parameters including molecular conformations, hydrogen bonding, and π-stacking. Experimental measurements of key properties, such as aqueous solubilities and regeneration energies and temperatures, are complemented by first-principles calculations of lattice and hydration free energies, as well as free energies of reactions with CO2, and BIG regenerations. Minor structural modifications in the molecular structure of the BIGs are found to result in major changes in the crystal structures and the aqueous solubilities within the series, leading to enhanced DAC.

4.
Soft Matter ; 13(46): 8849-8857, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29143026

ABSTRACT

With a growing variety of nanoparticles available, research probing the influence of particle deformability, morphology, and topology on the behavior of all polymer nanocomposites is also increasing. In particular, the behavior of soft polymeric nanoparticles in polymer nanocomposites has displayed unique behavior, but their precise performance depends intimately on the internal structure and morphology of the nanoparticle. With the goal of providing guidelines to control the structure and morphology of soft polymeric nanoparticles, we have examined monomer starved semi-batch nano-emulsion polymerizations that form organic, soft nanoparticles, to correlate the precise structure of the nanoparticle to the rate of monomer addition and crosslinking density. The synthesis method produces 5-20 nm radii polystyrene nanoparticles with tunable morphologies. We report small angle neutron scattering (SANS) results that correlate synthetic conditions to the structural characteristics of soft polystyrene nanoparticles. These results show that the measured molecular weight of the nanoparticles is controlled by the monomer addition rate, the total nanoparticle radius is controlled by the excess surfactant concentration, and the crosslinking density has a direct effect on the topology of each nanoparticle. These studies thus provide pathways to control these 3 structural characteristics of the nanoparticle. This research, therefore provides a conduit to thoroughly investigate the effect of structural features of soft nanoparticles on their individual properties and those of their polymer nanocomposites.

5.
ACS Nano ; 11(1): 752-759, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28051845

ABSTRACT

Polymer nanocomposites (PNCs) are important materials that are widely used in many current technologies and potentially have broader applications in the future due to their excellent property tunability, light weight, and low cost. However, expanding the limits in property enhancement remains a fundamental scientific challenge. Here, we demonstrate that well-dispersed, small (diameter ∼1.8 nm) nanoparticles with attractive interactions lead to unexpectedly large and qualitatively different changes in PNC structural dynamics in comparison to conventional nanocomposites based on particles of diameters ∼10-50 nm. At the same time, the zero-shear viscosity at high temperatures remains comparable to that of the neat polymer, thereby retaining good processability and resolving a major challenge in PNC applications. Our results suggest that the nanoparticle mobility and relatively short lifetimes of nanoparticle-polymer associations open qualitatively different horizons in the tunability of macroscopic properties in nanocomposites with a high potential for the development of advanced functional materials.

6.
ACS Macro Lett ; 6(2): 68-72, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-35632893

ABSTRACT

The structure and polymer-nanoparticle interactions among physically adsorbed poly(2-vinylpyridine) chains on the surface of silica nanoparticles (NPs) were systematically studied as a function of molecular weight (MW) by sum frequency generation (SFG) and X-ray photoelectron (XPS) spectroscopies. Analysis of XPS data identified hydrogen bonds between the polymer and NPs, while SFG evaluated the change in the number of free OH sites on the NP's surface. Our data revealed that the hydrogen bonds and amount of the free -OH sites have a significant dependence on the polymer's MW. These results provide clear experimental evidence that the interaction of physically adsorbed chains with nanoparticles is strongly MW dependent and aids in unraveling the microscopic mechanism responsible for the strong MW dependence of dynamics of the interfacial layer in polymer nanocomposites.

7.
ACS Nano ; 10(7): 6843-52, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27337392

ABSTRACT

It is generally believed that the strength of the polymer-nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as low as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching-a parameter accessible from the MW or grafting density.

8.
Nano Lett ; 16(6): 3630-7, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27203453

ABSTRACT

The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

9.
Phys Rev Lett ; 116(3): 038302, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849618

ABSTRACT

The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

SELECTION OF CITATIONS
SEARCH DETAIL