Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
J Alzheimers Dis ; 90(4): 1739-1747, 2022.
Article in English | MEDLINE | ID: mdl-36336933

ABSTRACT

BACKGROUND: Distinguishing between Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) results in poor diagnostic accuracy. OBJECTIVE: To investigate the utility of electroencephalography (EEG)-based biomarkers in comparison and in addition to established cerebrospinal fluid (CSF) biomarkers in the AD versus FTLD differential diagnosis. METHODS: The study cohort comprised 37 AD and 30 FTLD patients, of which 17 AD and 9 FTLD patients had definite diagnoses. All participants had CSF neurochemical (NCM) biomarker analyses (Aß1-42, T-tau, P-tau181, and Nf-L) and underwent 19-channel resting-state EEG. From the EEG spectra, dominant frequency peaks were extracted in four regions resulting in four dominant frequencies. This produced eight features (4 NCM + 4 EEG). RESULTS: When NCM and EEG markers were combined, the diagnostic accuracy increased significantly. In the whole group, the accuracy went up from 79% (NCM) to almost 82%, while in the definite group only, it went up from around 85% to almost 95%. Two differences in the occurrence of the dominant EEG frequency were discovered: people lacking a clear dominant peak almost all had definite AD, while people with two peaks more often had FTLD. CONCLUSION: Combining EEG with NCM biomarkers resulted in differential diagnostic accuracies of 82% in clinically diagnosed AD and FTD patients and of 95% in patients having a definite diagnosis, which was significantly better than with EEG or NCM biomarkers alone. This suggests that NCM and EEG markers are complementary, revealing different aspects of the disease and therefore confirms again their relevance in developing additional diagnosis tools.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Pilot Projects , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Diagnosis, Differential , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/cerebrospinal fluid , Frontotemporal Dementia/diagnosis , Biomarkers/cerebrospinal fluid
2.
Neurobiol Aging ; 108: 99-109, 2021 12.
Article in English | MEDLINE | ID: mdl-34551375

ABSTRACT

We aimed to evaluate the specificity of neurogranin (Ng) for Alzheimer's disease (AD) in a dementia cohort. Cerebrospinal fluid (CSF) Ng was measured (ELISA) in two independent cohorts: (1) clinical (n = 116; age 72±11 years): AD, non-AD (+high T-tau), and controls; and (2) autopsy-confirmed (n = 97; age 71±11 years): AD and non-AD, and 50 controls (age 60±6 years). In 16 autopsy-confirmed AD and 8 control subjects, Ng was measured in tissue (BA6+BA22). Ng was compared across diagnostic groups or neuropathological staging using multilinear regression models. Median[IQR] Ng concentrations were elevated in AD (414[315-499]pg/mL) and non-AD (464[319-699]pg/mL) compared to controls (260[193-306]pg/mL), but highest in AD-high-T-tau (874[716, 1148] pg/mL) and Creutzfeldt-Jakob disease (CJD; 828[703-1373]pg/mL) in cohort 1 (p < 0.01), but not in cohort 2: AD: 358[249-470]pg/mL; non-AD:245[137-416]pg/mL; controls: 259[193-370]pg/mL. Ng and tau biomarkers strongly correlated (r = 0.4-0.9, p < 0.05), except in CJD. CSF Ng concentrations were not associated with neuropathological AD hallmarks, nor with tissue Ng concentrations. CSF Ng is a general biomarker for synaptic degeneration, strongly correlating with CSF tau, but without added value for AD differential diagnosis.


Subject(s)
Alzheimer Disease/diagnosis , Neurodegenerative Diseases/diagnosis , Neurogranin/cerebrospinal fluid , Synapses , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Cohort Studies , Creutzfeldt-Jakob Syndrome/diagnosis , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Negative Results
3.
Acta Neuropathol Commun ; 9(1): 25, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579389

ABSTRACT

Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are clinically, pathologically and etiologically disorders embedded in the Lewy body disease (LBD) continuum, characterized by neuronal α-synuclein pathology. Rare homozygous and compound heterozygous premature termination codon (PTC) mutations in the Vacuolar Protein Sorting 13 homolog C gene (VPS13C) are associated with early-onset recessive PD. We observed in two siblings with early-onset age (< 45) and autopsy confirmed DLB, compound heterozygous missense mutations in VPS13C, p.Trp395Cys and p.Ala444Pro, inherited from their healthy parents in a recessive manner. In lymphoblast cells of the index patient, the missense mutations reduced VPS13C expression by 90% (p = 0.0002). Subsequent, we performed targeted resequencing of VPS13C in 844 LBD patients and 664 control persons. Using the optimized sequence kernel association test, we obtained a significant association (p = 0.0233) of rare VPS13C genetic variants (minor allele frequency ≤ 1%) with LBD. Among the LBD patients, we identified one patient with homozygous missense mutations and three with compound heterozygous missense mutations in trans position, indicative for recessive inheritance. In four patients with compound heterozygous mutations, we were unable to determine trans position. The frequency of LBD patient carriers of proven recessive compound heterozygous missense mutations is 0.59% (5/844). In autopsy brain tissue of two unrelated LBD patients, the recessive compound heterozygous missense mutations reduced VPS13C expression. Overexpressing of wild type or mutant VPS13C in HeLa or SH-SY5Y cells, demonstrated that the mutations p.Trp395Cys or p.Ala444Pro, abolish the endosomal/lysosomal localization of VPS13C. Overall, our data indicate that rare missense mutations in VPS13C are associated with LBD and recessive compound heterozygous missense mutations might have variable effects on the expression and functioning of VPS13C. We conclude that comparable to the recessive inherited PTC mutations in VPS13C, combinations of rare recessive compound heterozygous missense mutations reduce VPS13C expression and contribute to increased risk of LBD.


Subject(s)
Heterozygote , Homozygote , Lewy Body Disease/genetics , Mutation, Missense , Parkinson Disease/genetics , Proteins/genetics , Proteins/metabolism , Aged , Autopsy , Brain/pathology , Female , Humans , Lewy Body Disease/pathology , Male , Middle Aged , Parkinson Disease/pathology , Phenotype , Whole Genome Sequencing
4.
J Neuropathol Exp Neurol ; 80(4): 313-324, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33638350

ABSTRACT

Hippocampal sclerosis (HS) is a common neuropathological finding and has been associated with advanced age, TDP-43 proteinopathy, and cerebrovascular pathology. We analyzed neuropathological data of an autopsy cohort of early-onset frontotemporal dementia patients. The study aimed to determine whether in this cohort HS was related to TDP-43 proteinopathy and whether additional factors could be identified. We examined the relationship between HS, proteinopathies in frontotemporal cortices and hippocampus, Alzheimer disease, cerebrovascular changes, and age. We confirmed a strong association between HS and hippocampal TDP-43, whereas there was a weaker association between HS and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Nearly all of the FTLD-TDP cases had TDP-43 pathology in the hippocampus. HS was present in all FTLD-TDP type D cases, in 50% of the FTLD-TDP A cohort and in 6% of the FTLD-TDP B cohort. Our data also showed a significant association between HS and vascular changes. We reviewed the literature on HS and discuss possible pathophysiological mechanisms between TDP-43 pathology, cerebrovascular disease, and HS. Additionally, we introduced a quantitative neuronal cell count in CA1 to objectify the semiquantitative visual appreciation of HS.


Subject(s)
Cerebrovascular Disorders/pathology , Frontotemporal Dementia/pathology , Hippocampus/pathology , Neurodegenerative Diseases/pathology , Aged , Aged, 80 and over , Cerebrovascular Disorders/metabolism , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Frontotemporal Dementia/metabolism , Hippocampus/metabolism , Humans , Male , Middle Aged , Neurodegenerative Diseases/metabolism , Retrospective Studies , Sclerosis
5.
Alzheimers Res Ther ; 12(1): 108, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917274

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) mutations in amyloid precursor protein (APP) and presenilins (PSENs) could potentially lead to the production of longer amyloidogenic Aß peptides. Amongst these, Aß1-43 is more prone to aggregation and has higher toxic properties than the long-known Aß1-42. However, a direct effect on Aß1-43 in biomaterials of individuals carrying genetic mutations in the known AD genes is yet to be determined. METHODS: N = 1431 AD patients (n = 280 early-onset (EO) and n = 1151 late-onset (LO) AD) and 809 control individuals were genetically screened for APP and PSENs. For the first time, Aß1-43 levels were analysed in cerebrospinal fluid (CSF) of 38 individuals carrying pathogenic or unclear rare mutations or the common PSEN1 p.E318G variant and compared with Aß1-42 and Aß1-40 CSF levels. The soluble sAPPα and sAPPß species were also measured for the first time in mutation carriers. RESULTS: A known pathogenic mutation was identified in 5.7% of EOAD patients (4.6% PSEN1, 1.07% APP) and in 0.3% of LOAD patients. Furthermore, 12 known variants with unclear pathogenicity and 11 novel were identified. Pathogenic and unclear mutation carriers showed a significant reduction in CSF Aß1-43 levels compared to controls (p = 0.037; < 0.001). CSF Aß1-43 levels positively correlated with CSF Aß1-42 in both pathogenic and unclear carriers and controls (all p < 0.001). The p.E318G carriers showed reduced Aß1-43 levels (p < 0.001), though genetic association with AD was not detected. sAPPα and sAPPß CSF levels were significantly reduced in the group of unclear (p = 0.006; 0.005) and p.E318G carriers (p = 0.004; 0.039), suggesting their possible involvement in AD. Finally, using Aß1-43 and Aß1-42 levels, we could re-classify as "likely pathogenic" 3 of the unclear mutations. CONCLUSION: This is the first time that Aß1-43 levels were analysed in CSF of AD patients with genetic mutations in the AD causal genes. The observed reduction of Aß1-43 in APP and PSENs carriers highlights the pathogenic role of longer Aß peptides in AD pathogenesis. Alterations in Aß1-43 could prove useful in understanding the pathogenicity of unclear APP and PSENs variants, a critical step towards a more efficient genetic counselling.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/genetics , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Heterozygote , Humans , Mutation/genetics , Presenilin-1/genetics , Presenilin-2/genetics
6.
Acta Neuropathol ; 139(6): 1001-1024, 2020 06.
Article in English | MEDLINE | ID: mdl-32172343

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative brain disease presenting with a variety of motor and non-motor symptoms, loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the occurrence of α-synuclein-positive Lewy bodies in surviving neurons. Here, we performed whole exome sequencing in 52 early-onset PD patients and identified 3 carriers of compound heterozygous mutations in the ATP10B P4-type ATPase gene. Genetic screening of a Belgian PD and dementia with Lewy bodies (DLB) cohort identified 4 additional compound heterozygous mutation carriers (6/617 PD patients, 0.97%; 1/226 DLB patients, 0.44%). We established that ATP10B encodes a late endo-lysosomal lipid flippase that translocates the lipids glucosylceramide (GluCer) and phosphatidylcholine (PC) towards the cytosolic membrane leaflet. The PD associated ATP10B mutants are catalytically inactive and fail to provide cellular protection against the environmental PD risk factors rotenone and manganese. In isolated cortical neurons, loss of ATP10B leads to general lysosomal dysfunction and cell death. Impaired lysosomal functionality and integrity is well known to be implicated in PD pathology and linked to multiple causal PD genes and genetic risk factors. Our results indicate that recessive loss of function mutations in ATP10B increase risk for PD by disturbed lysosomal export of GluCer and PC. Both ATP10B and glucocerebrosidase 1, encoded by the PD risk gene GBA1, reduce lysosomal GluCer levels, emerging lysosomal GluCer accumulation as a potential PD driver.


Subject(s)
Adenosine Triphosphatases/genetics , Glucosylceramides/metabolism , Lysosomes/metabolism , Membrane Transport Proteins/genetics , Mutation/genetics , Parkinson Disease/genetics , Aged , Aged, 80 and over , Dopaminergic Neurons/metabolism , Female , Glucosylceramidase/genetics , Glucosylceramides/genetics , Humans , Lewy Bodies/pathology , Lysosomes/genetics , Male , Middle Aged , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism
7.
Acta Neuropathol ; 137(6): 901-918, 2019 06.
Article in English | MEDLINE | ID: mdl-30874922

ABSTRACT

Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.


Subject(s)
Chromosome Inversion , Dementia/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Mutation , Nerve Tissue Proteins/deficiency , Neurodegenerative Diseases/genetics , Neurons/physiology , Potassium Channels/deficiency , Action Potentials/physiology , Adult , Aged , Chromosomes, Human, Pair 7/genetics , Dementia/physiopathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Female , Genes, Dominant , Homeostasis , Humans , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurodegenerative Diseases/physiopathology , Pedigree , Penetrance , Polymorphism, Single Nucleotide , Potassium Channels/genetics , Potassium Channels/physiology , Protein Stability , Protein Transport , Synaptic Transmission , Whole Genome Sequencing
8.
J Alzheimers Dis ; 68(3): 1151-1159, 2019.
Article in English | MEDLINE | ID: mdl-30883344

ABSTRACT

BACKGROUND: Despite decades of research on the optimization of the diagnosis of Alzheimer's disease (AD), its biomarker-based diagnosis is being hampered by the lack of comparability of raw biomarker data. In order to overcome this limitation, the Erlangen Score (ES), among other approaches, was set up as a diagnostic-relevant interpretation algorithm. OBJECTIVE: To validate the ES algorithm in a cohort of neuropathologically confirmed cases with AD (n = 106) and non-AD dementia (n = 57). METHODS: Cerebrospinal fluid (CSF) biomarker concentrations of Aß1-42, T-tau, and P-tau181 were measured with commercially available single analyte ELISA kits. Based on these biomarkers, ES was calculated as previously reported. RESULTS: This algorithm proved to categorize AD in different degrees of likelihood, ranging from neurochemically "normal", "improbably having AD", "possibly having AD", to "probably having AD", with a diagnostic accuracy of 74% using the neuropathology as a reference. CONCLUSION: The ability of the ES to overcome the high variability of raw CSF biomarker data may provide a useful diagnostic tool for comparing neurochemical diagnoses between different labs or methods used.


Subject(s)
Dementia/diagnosis , Aged , Aged, 80 and over , Algorithms , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Autopsy , Biomarkers/cerebrospinal fluid , Brain/pathology , Dementia/cerebrospinal fluid , Dementia/pathology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , ROC Curve , Reproducibility of Results , tau Proteins/cerebrospinal fluid
9.
Brain ; 141(9): 2592-2604, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30084953

ABSTRACT

Autosomal recessive cerebellar ataxias are a group of rare disorders that share progressive degeneration of the cerebellum and associated tracts as the main hallmark. Here, we report two unrelated patients with a new subtype of autosomal recessive cerebellar ataxia caused by biallelic, gene-disruptive mutations in GDAP2, a gene previously not implicated in disease. Both patients had onset of ataxia in the fourth decade. Other features included progressive spasticity and dementia. Neuropathological examination showed degenerative changes in the cerebellum, olive inferior, thalamus, substantia nigra, and pyramidal tracts, as well as tau pathology in the hippocampus and amygdala. To provide further evidence for a causative role of GDAP2 mutations in autosomal recessive cerebellar ataxia pathophysiology, its orthologous gene was investigated in the fruit fly Drosophila melanogaster. Ubiquitous knockdown of Drosophila Gdap2 resulted in shortened lifespan and motor behaviour anomalies such as righting defects, reduced and uncoordinated walking behaviour, and compromised flight. Gdap2 expression levels responded to stress treatments in control flies, and Gdap2 knockdown flies showed increased sensitivity to deleterious effects of stressors such as reactive oxygen species and nutrient deprivation. Thus, Gdap2 knockdown in Drosophila and GDAP2 loss-of-function mutations in humans lead to locomotor phenotypes, which may be mediated by altered responses to cellular stress.


Subject(s)
Cerebellar Ataxia/genetics , Cerebellar Ataxia/physiopathology , Nerve Tissue Proteins/genetics , Adult , Animals , Ataxia/genetics , Ataxia/physiopathology , Cerebellar Ataxia/metabolism , Cerebellum/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Gene Knockdown Techniques/methods , Genes, Recessive , Genetic Predisposition to Disease/genetics , Humans , Middle Aged , Mutation , Nerve Tissue Proteins/physiology , Phenotype , Stress, Physiological/genetics , Stress, Physiological/physiology
10.
Alzheimers Dement (Amst) ; 10: 99-111, 2018.
Article in English | MEDLINE | ID: mdl-29780859

ABSTRACT

INTRODUCTION: People with Down syndrome (DS) are at high risk for Alzheimer's disease (AD). Defects in monoamine neurotransmitter systems are implicated in DS and AD but have not been comprehensively studied in DS. METHODS: Noradrenaline, adrenaline, and their metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid; and serotonin and its metabolite 5-hydroxyindoleacetic acid were quantified in 15 brain regions of DS without AD (DS, n = 4), DS with AD (DS+AD, n = 17), early-onset AD (EOAD, n = 11) patients, and healthy non-DS controls (n = 10) in the general population. Moreover, monoaminergic concentrations were determined in cerebrospinal fluid (CSF)/plasma samples of DS (n = 37/149), DS with prodromal AD (DS+pAD, n = 13/36), and DS+AD (n = 18/40). RESULTS: In brain, noradrenergic and serotonergic compounds were overall reduced in DS+AD versus EOAD, while the dopaminergic system showed a bidirectional change. For DS versus non-DS controls, significantly decreased MHPG levels were noted in various brain regions, though to a lesser extent than for DS+AD versus EOAD. Apart from DOPAC, CSF/plasma concentrations were not altered between groups. DISCUSSION: Monoamine neurotransmitters and metabolites were evidently impacted in DS, DS+AD, and EOAD. DS and DS+AD presented a remarkably similar monoaminergic profile, possibly related to early deposition of amyloid pathology in DS. To confirm whether monoaminergic alterations are indeed due to early amyloid ß accumulation, future avenues include positron emission tomography studies of monoaminergic neurotransmission in relation to amyloid deposition, as well as relating monoaminergic concentrations to CSF/plasma levels of amyloid ß and tau within individuals.

11.
J Alzheimers Dis ; 63(1): 373-381, 2018.
Article in English | MEDLINE | ID: mdl-29614653

ABSTRACT

BACKGROUND: Differential dementia diagnosis remains a challenge due to overlap of clinical profiles, which often results in diagnostic doubt. OBJECTIVE: Determine the added diagnostic value of cerebrospinal fluid (CSF) biomarkers for differential dementia diagnosis as compared to autopsy-confirmed diagnosis. METHODS: Seventy-one dementia patients with autopsy-confirmed diagnoses were included in this study. All neuropathological diagnoses were established according to standard neuropathological criteria and consisted of Alzheimer's disease (AD) or other dementias (NONAD). CSF levels of Aß1 - 42, T-tau, and P-tau181 were determined and interpreted based on the IWG-2 and NIA-AA criteria, separately. A panel of three neurologists experienced with dementia made clinical consensus dementia diagnoses. Clinical and CSF biomarker diagnoses were compared to the autopsy-confirmed diagnoses. RESULTS: Forty-two patients (59%) had autopsy-confirmed AD, whereas 29 patients (41%) had autopsy-confirmed NONAD. Of the 24 patients with an ambiguous clinical dementia diagnosis, a correct diagnosis would have been established in 67% of the cases applying CSF biomarkers in the context of the IWG-2 or the NIA-AA criteria respectively. CONCLUSION: AD CSF biomarkers have an added diagnostic value in differential dementia diagnosis and can help establishing a correct dementia diagnosis in case of ambiguous clinical dementia diagnoses.


Subject(s)
Autopsy/methods , Biomarkers/cerebrospinal fluid , Dementia/cerebrospinal fluid , Dementia/diagnosis , Diagnosis, Differential , Aged , Aged, 80 and over , Amyloid beta-Peptides/cerebrospinal fluid , Cohort Studies , Female , Humans , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Psychiatric Status Rating Scales , tau Proteins/cerebrospinal fluid
12.
Neurobiol Aging ; 67: 84-94, 2018 07.
Article in English | MEDLINE | ID: mdl-29653316

ABSTRACT

We previously reported a granulin (GRN) null mutation, originating from a common founder, in multiple Belgian families with frontotemporal dementia. Here, we used data of a 10-year follow-up study to describe in detail the clinical heterogeneity observed in this extended founder pedigree. We identified 85 patients and 40 unaffected mutation carriers, belonging to 29 branches of the founder pedigree. Most patients (74.4%) were diagnosed with frontotemporal dementia, while others had a clinical diagnosis of unspecified dementia, Alzheimer's dementia or Parkinson's disease. The observed clinical heterogeneity can guide clinical diagnosis, genetic testing, and counseling of mutation carriers. Onset of initial symptomatology is highly variable, ranging from age 45 to 80 years. Analysis of known modifiers, suggested effects of GRN rs5848, microtubule-associated protein tau H1/H2, and chromosome 9 open reading frame 72 G4C2 repeat length on onset age but explained only a minor fraction of the variability. Contrary, the extended GRN founder family is a valuable source for identifying other onset age modifiers based on exome or genome sequences. These modifiers might be interesting targets for developing disease-modifying therapies.


Subject(s)
Frontotemporal Dementia/genetics , Genetic Association Studies , Intercellular Signaling Peptides and Proteins/genetics , Loss of Function Mutation , Adult , Age of Onset , Aged , Aged, 80 and over , Belgium , Dimethylhydrazines , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pedigree , Progranulins , Propionates
13.
Alzheimers Res Ther ; 10(1): 31, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29559004

ABSTRACT

BACKGROUND: We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD), as well as between FTLD pathological subtypes. METHODS: CSF levels of routine AD biomarkers (phosphorylated tau (p-tau181), total tau (t-tau), and amyloid-beta (Aß)1-42) and neurofilament proteins, as well as progranulin levels in both CSF and serum were quantified in definite FTLD (n = 46), clinical AD (n = 45), and cognitively healthy controls (n = 20). FTLD subgroups were defined by genetic carrier status and/or postmortem neuropathological confirmation (FTLD-TDP: n = 34, including FTLD-C9orf72: n = 19 and FTLD-GRN: n = 9; FTLD-tau: n = 10). RESULTS: GRN mutation carriers had significantly lower progranulin levels compared to other FTLD patients, AD, and controls. Both t-tau and p-tau181 were normal in FTLD patients, even in FTLD-tau. Aß1-42 levels were very variable in FTLD. Neurofilament light chain (Nf-L) was significantly higher in FTLD compared with AD and controls. The reference logistic regression model based on the established AD biomarkers could be improved by the inclusion of CSF Nf-L, which was also important for the differentiation between FTLD and controls. Within the FTLD cohort, no significant differences were found between FTLD-TDP and FTLD-tau, but GRN mutation carriers had higher t-tau and Nf-L levels than C9orf72 mutation carriers and FTLD-tau patients. CONCLUSIONS: There is an added value for Nf-L in the differential diagnosis of FTLD. Progranulin levels in CSF depend on mutation status, and GRN mutation carriers seem to be affected by more severe neurodegeneration.


Subject(s)
Frontotemporal Lobar Degeneration/cerebrospinal fluid , Frontotemporal Lobar Degeneration/diagnosis , Intermediate Filaments/metabolism , Progranulins/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/diagnosis , Cohort Studies , Female , Frontotemporal Lobar Degeneration/genetics , Humans , Male , Mental Status Schedule , Middle Aged
14.
Alzheimers Res Ther ; 10(1): 7, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29370838

ABSTRACT

BACKGROUND: In this paper, we describe the clinical and neuropathological findings of nine members of the Belgian progranulin gene (GRN) founder family. In this family, the loss-of-function mutation IVS1 + 5G > C was identified in 2006. In 2007, a clinical description of the mutation carriers was published that revealed the clinical heterogeneity among IVS1 + 5G > C carriers. We report our comparison of our data with the published clinical and neuropathological characteristics of other GRN mutations as well as other frontotemporal lobar degeneration (FTLD) syndromes, and we present a review of the literature. METHODS: For each case, standardized sampling and staining were performed to identify proteinopathies, cerebrovascular disease, and hippocampal sclerosis. RESULTS: The neuropathological substrate in the studied family was compatible in all cases with transactive response DNA-binding protein (TDP) proteinopathy type A, as expected. Additionally, most of the cases presented also with primary age-related tauopathy (PART) or mild Alzheimer's disease (AD) neuropathological changes, and one case had extensive Lewy body pathology. An additional finding was the presence of cerebral small vessel changes in every patient in this family. CONCLUSIONS: Our data show not only that the IVS1 + 5G > C mutation has an exclusive association with FTLD-TDP type A proteinopathy but also that other proteinopathies can occur and should be looked for. Because the penetrance rate of the clinical phenotype of carriers of GRN mutations is age-dependent, further research is required to investigate the role of co-occurring age-related pathologies such as AD, PART, and cerebral small vessel disease.


Subject(s)
Frontotemporal Lobar Degeneration/genetics , Loss of Function Mutation , Progranulins/genetics , Aged , Brain/diagnostic imaging , Brain/pathology , Cerebrovascular Disorders/diagnostic imaging , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/pathology , Family , Female , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/pathology , Heterozygote , Humans , Male , Middle Aged , Pedigree , Phenotype
15.
Alzheimers Res Ther ; 9(1): 49, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28709448

ABSTRACT

BACKGROUND: The Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers Aß1-42, t-tau, and p-tau181 overlap with other diseases. New tau modifications or epitopes, such as the non-phosphorylated tau fraction (p-taurel), may improve differential dementia diagnosis. The goal of this study is to investigate if p-taurel can improve the diagnostic performance of the AD CSF biomarker panel for differential dementia diagnosis. METHODS: The study population consisted of 45 AD, 45 frontotemporal lobar degeneration (FTLD), 45 dementia with Lewy bodies (DLB), and 21 Creutzfeldt-Jakob disease (CJD) patients, and 20 cognitively healthy controls. A substantial subset of the patients was pathology-confirmed. CSF levels of Aß1-42, t-tau, p-tau181, and p-taurel were determined with commercially available single-analyte enzyme-linked immunosorbent assay (ELISA) kits. Diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analyses, and area under the curve (AUC) values were compared using DeLong tests. RESULTS: The diagnostic performance of single markers as well as biomarker ratios was determined for each pairwise comparison of different dementia groups and controls. The addition of p-taurel to the AD biomarker panel decreased its diagnostic performance when discriminating non-AD, FTLD, and DLB from AD. As a single marker, p-taurel increased the diagnostic performance for CJD. No significant difference was found in AUC values with the addition of p-taurel when differentiating between AD or non-AD dementias and controls. CONCLUSIONS: The addition of p-taurel to the AD CSF biomarker panel failed to improve differentiation between AD and non-AD dementias.


Subject(s)
Dementia/cerebrospinal fluid , Dementia/diagnosis , Diagnosis, Differential , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Aged, 80 and over , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cohort Studies , Dementia/classification , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , ROC Curve
16.
Orphanet J Rare Dis ; 12(1): 86, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28490364

ABSTRACT

BACKGROUND: Sporadic late-onset nemaline myopathy (SLONM) is a rare, late-onset muscle disorder, characterized by the presence of nemaline rods in muscle fibers. Phenotypic characterization in a large cohort and a comprehensive overview of SLONM are lacking. METHODS: We studied the clinico-pathological features, treatment and outcome in a large cohort of 76 patients with SLONM, comprising 10 new patients and 66 cases derived from a literature meta-analysis (PubMed, 1966-2016), and compared these with 15 reported HIV-associated nemaline myopathy (HIV-NM) cases. In 6 SLONM patients, we performed a targeted next-generation sequencing (NGS) panel comprising 283 myopathy genes. RESULTS: SLONM patients had a mean age at onset of 52 years. The predominant phenotype consisted of weakness and atrophy of proximal upper limbs in 84%, of proximal lower limbs in 80% and both in 67%. Other common symptoms included axial weakness in 68%, as well as dyspnea in 55% and dysphagia in 47% of the patients. In 53% a monoclonal gammopathy of unknown significance (MGUS) was detected in serum. The mean percentage of muscle fibers containing rods was 28% (range 1-63%). In 2 cases ultrastructural analysis was necessary to detect the rods. The most successful treatment in SLONM patients (all with MGUS) was autologous peripheral blood stem cell therapy. A targeted NGS gene panel in 6 SLONM patients (without MGUS) did not reveal causative pathogenic variants. In a comparison of SLONM patients with and without MGUS, the former comprised significantly more males, had more rapid disease progression, and more vacuolar changes in muscle fibers. Interestingly, the muscle biopsy of 2 SLONM patients with MGUS revealed intranuclear rods, whereas this feature was not seen in any of the biopsies from patients without paraproteinemia. Compared to the overall SLONM cohort, significantly more HIV-NM patients were male, with a lower age at onset (mean 34 years). In addition, immunosuppression was more frequently applied with more favorable outcome, and muscle biopsies revealed a significantly higher degree of inflammation and necrosis in this cohort. Similar to SLONM, MGUS was present in half of the HIV-NM patients. CONCLUSIONS: SLONM presents a challenging, but important differential diagnosis to other neuromuscular diseases of adult onset. Investigations for MGUS and HIV should be performed, as they require distinct but often effective therapeutic approaches. Even though SLONM and HIV-NM show some differences, there exists a large clinico-pathological overlap between the 2 entities.


Subject(s)
Myopathies, Nemaline/pathology , Age of Onset , Animals , High-Throughput Nucleotide Sequencing/methods , Humans , Immunosuppression Therapy , Muscles/metabolism , Muscles/pathology , Myopathies, Nemaline/metabolism , Myopathies, Nemaline/therapy , Stem Cell Transplantation
17.
JAMA Neurol ; 74(4): 445-452, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28192553

ABSTRACT

Importance: Patients carrying a C9orf72 repeat expansion leading to frontotemporal dementia and/or amyotrophic lateral sclerosis have highly variable ages at onset of disease, suggesting the presence of modifying factors. Objective: To provide clinical-based evidence for disease anticipation in families carrying a C9orf72 repeat expansion by analyzing age at onset, disease duration, and age at death in successive generations. Design, Setting, and Participants: This cohort study was performed from June 16, 2000, to June 1, 2016, in 36 extended Belgian families in which a C9orf72 repeat expansion was segregating. The generational effect on age at onset, disease duration, and age at death was estimated using a mixed effects Cox proportional hazards regression model, including random-effects terms for within-family correlation and kinship. Time until disease onset or last examination, time from disease onset until death or last examination, or age at death was collected for for 244 individuals (132 proven or obligate C9orf72 carriers), of whom 147 were clinically affected (89 proven or obligate C9orf72 carriers). Main Outcomes and Measures: Generational effect on age at onset, disease duration, and age at death. Results: Among the 111 individuals with age at onset available (66 men and 45 women; mean [SD] age, 57.2 [9.1] years), the mean (SD) age at onset per generation (from earliest-born to latest-born generation) was 62.5 (8.3), 57.1 (8.2), 54.6 (10.2), and 49.3 (7.5) years. Censored regression analysis on all affected and unaffected at-risk relatives confirmed a decrease in age at onset in successive generations (P < .001). No generational effect was observed for disease duration or age at death. Conclusions and Relevance: The clinical data provide supportive evidence for the occurrence of disease anticipation in families carrying a C9orf72 repeat expansion by means of a decrease in age at onset across successive generations. This finding may help clinicians decide from which age onward it may be relevant to clinically follow presymptomatic individuals who carry a C9orf72 repeat expansion.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Pedigree , Proteins/genetics , Age of Onset , Aged , C9orf72 Protein , Cohort Studies , Female , Humans , Male , Middle Aged , Proportional Hazards Models
18.
Ann Clin Transl Neurol ; 4(1): 4-14, 2017 01.
Article in English | MEDLINE | ID: mdl-28078310

ABSTRACT

OBJECTIVE: Mitochondrial dysfunction plays a key role in the pathophysiology of neurodegenerative disorders such as ataxia and Parkinson's disease. We describe an extended Belgian pedigree where seven individuals presented with adult-onset cerebellar ataxia, axonal peripheral ataxic neuropathy, and tremor, in variable combination with parkinsonism, seizures, cognitive decline, and ophthalmoplegia. We sought to identify the underlying molecular etiology and characterize the mitochondrial pathophysiology of this neurological syndrome. METHODS: Clinical, neurophysiological, and neuroradiological evaluations were conducted. Patient muscle and cultured fibroblasts underwent extensive analyses to assess mitochondrial function. Genetic studies including genome-wide sequencing were conducted. RESULTS: Hallmarks of mitochondrial dysfunction were present in patients' tissues including ultrastructural anomalies of mitochondria, mosaic cytochrome c oxidase deficiency, and multiple mtDNA deletions. We identified a splice acceptor variant in POLG2, c.970-1G>C, segregating with disease in this family and associated with a concomitant decrease in levels of POLG2 protein in patient cells. INTERPRETATION: This work extends the clinical spectrum of POLG2 deficiency to include an overwhelming, adult-onset neurological syndrome that includes cerebellar syndrome, peripheral neuropathy, tremor, and parkinsonism. We therefore suggest to include POLG2 sequencing in the evaluation of ataxia and sensory neuropathy in adults, especially when it is accompanied by tremor or parkinsonism with white matter disease. The demonstration that deletions of mtDNA resulting from autosomal-dominant POLG2 variant lead to a monogenic neurodegenerative multicomponent syndrome provides further evidence for a major role of mitochondrial dysfunction in the pathomechanism of nonsyndromic forms of the component neurodegenerative disorders.

19.
Neurobiol Aging ; 51: 177.e9-177.e16, 2017 03.
Article in English | MEDLINE | ID: mdl-28069311

ABSTRACT

Mutation screening and phenotypic profiling of 2 amyotrophic lateral sclerosis-(ALS) and frontotemporal dementia-(FTD) associated genes, CHCHD10 and TUBA4A, were performed in a Belgian cohort of 459 FTD, 28 FTD-ALS, and 429 ALS patients. In CHCHD10, we identified a novel nonsense mutation (p.Gln108*) in a patient with atypical clinical FTD and pathology-confirmed Parkinson's disease (1/459, 0.22%) leading to loss of transcript. We further observed 3 previously described missense variants (p.Pro34Ser, p.Pro80Leu, and p.Pro96Thr) that were also present in the matched control series. In TUBA4A, we detected a novel frameshift mutation (p.Arg64Glyfs*90) leading to a truncated protein in 1 FTD patient (1/459 of 0.22%) with family history of Parkinson's disease and cognitive impairment, and a novel missense mutation (p.Thr381Met) in 2 sibs with familial ALS and memory problems (1 index patient/429, 0.23%) in whom we previously identified a pathogenic Chromosome 9 open reading frame 72 repeat expansion mutation. The present study confirms the role of CHCHD10 and TUBA4A in the FTD-ALS spectrum, although genetic variations in these 2 genes are extremely rare in the Belgian population and often associated with symptomatology of related neurodegenerative diseases including Parkinson's disease and Alzheimer's disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Genetic Association Studies , Mitochondrial Proteins/genetics , Mutation , Tubulin/genetics , Aged , Aged, 80 and over , Belgium , Cohort Studies , Female , Humans , Male , Middle Aged
20.
J Alzheimers Dis ; 55(1): 53-58, 2017.
Article in English | MEDLINE | ID: mdl-27636837

ABSTRACT

We investigated the power of EEG as biomarker in differential diagnosis of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). EEG was recorded from 106 patients with AD or FTLD, of which 37 had a definite diagnosis, and 40 controls. Dominant frequency peaks were extracted for all 19 channels, for each subject. The average frequency of the largest dominant frequency peaks (maxpeak) was significantly lower in AD than FTLD patients and controls. Based on ROC analysis, classification could be made with diagnostic accuracy of 78.9%. Our findings show that quantitative analysis of EEG maxpeak frequency is an easy and useful measure for differential dementia diagnosis.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Brain/physiopathology , Electroencephalography , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/physiopathology , Aged , Cohort Studies , Diagnosis, Differential , Female , Humans , Male , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...