Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 16(1): 191-5, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16249081

ABSTRACT

The synthesis of novel macrocyclic peptidomimetic inhibitors of the enzyme BACE1 is described. These macrocycles are derived from a hydroxyethylene core structure. Compound 7 was co-crystallized with BACE1 and the X-ray structure of the complex elucidated at 1.6 Angstrom resolution. This molecule inhibits the production of the Abeta peptide in HEK293 cells overexpressing APP751sw.


Subject(s)
Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Endopeptidases/chemistry , Endopeptidases/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor/chemistry , Animals , Aspartic Acid Endopeptidases , Cell Line , Humans , Kinetics , Models, Chemical , Models, Molecular , Protein Conformation , Protein Structure, Tertiary
2.
J Med Chem ; 48(16): 5305-20, 2005 Aug 11.
Article in English | MEDLINE | ID: mdl-16078848

ABSTRACT

(+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1), also known as LY354740, is a highly potent and selective agonist for group II metabotropic glutamate receptors (mGlu receptors 2 and 3) tested in clinical trials. It has been shown to block anxiety in the fear-potentiated startle model. Its relatively low bioavailability in different animal species drove the need for an effective prodrug form that would produce a therapeutic response at lower doses for the treatment of anxiety disorders. We have investigated the increase of intestinal absorption of this compound by targeting the human peptide transporter hPepT1 for active transport of di- and tripeptides derived from 1. We have found that oral administration of an N dipeptide derivative of 1 (12a) in rats shows up to an 8-fold increase in drug absorption and a 300-fold increase in potency in the fear-potentiated startle model in rats when compared with the parent drug 1.


Subject(s)
Alanine/analogs & derivatives , Anti-Anxiety Agents/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Dipeptides/chemical synthesis , Prodrugs/chemical synthesis , Receptors, Metabotropic Glutamate/agonists , Administration, Oral , Alanine/administration & dosage , Alanine/chemical synthesis , Alanine/pharmacokinetics , Animals , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/pharmacology , Biological Availability , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line, Tumor , Cricetinae , Cricetulus , Dipeptides/pharmacokinetics , Dipeptides/pharmacology , Humans , Male , Peptide Transporter 1 , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Stereoisomerism , Structure-Activity Relationship , Symporters/metabolism
3.
Mol Endocrinol ; 19(6): 1593-605, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15831517

ABSTRACT

LSN862 is a novel peroxisome proliferator-activated receptor (PPAR)alpha/gamma dual agonist with a unique in vitro profile that shows improvements on glucose and lipid levels in rodent models of type 2 diabetes and dyslipidemia. Data from in vitro binding, cotransfection, and cofactor recruitment assays characterize LSN862 as a high-affinity PPARgamma partial agonist with relatively less but significant PPARalpha agonist activity. Using these same assays, rosiglitazone was characterized as a high-affinity PPARgamma full agonist with no PPARalpha activity. When administered to Zucker diabetic fatty rats, LSN862 displayed significant glucose and triglyceride lowering and a significantly greater increase in adiponectin levels compared with rosiglitazone. Expression of genes involved in metabolic pathways in the liver and in two fat depots from compound-treated Zucker diabetic fatty rats was evaluated. Only LSN862 significantly elevated mRNA levels of pyruvate dehydrogenase kinase isozyme 4 and bifunctional enzyme in the liver and lipoprotein lipase in both fat depots. In contrast, both LSN862 and rosiglitazone decreased phosphoenol pyruvate carboxykinase in the liver and increased malic enzyme mRNA levels in the fat. In addition, LSN862 was examined in a second rodent model of type 2 diabetes, db/db mice. In this study, LSN862 demonstrated statistically better antidiabetic efficacy compared with rosiglitazone with an equivalent side effect profile. LSN862, rosiglitazone, and fenofibrate were each evaluated in the humanized apoA1 transgenic mouse. At the highest dose administered, LSN862 and fenofibrate reduced very low-density lipoprotein cholesterol, whereas, rosiglitazone increased very low-density lipoprotein cholesterol. LSN862, fenofibrate, and rosiglitazone produced maximal increases in high-density lipoprotein cholesterol of 65, 54, and 30%, respectively. These findings show that PPARgamma full agonist activity is not necessary to achieve potent and efficacious insulin-sensitizing benefits and demonstrate the therapeutic advantages of a PPARalpha/gamma dual agonist.


Subject(s)
Alkynes/pharmacology , Cinnamates/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hyperlipidemias/drug therapy , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Adiponectin , Alkynes/chemistry , Animals , Binding, Competitive , Body Weight , Cholesterol/metabolism , Cholesterol, HDL/metabolism , Cholesterol, VLDL/metabolism , Cinnamates/chemistry , Diabetes Mellitus, Type 2/metabolism , Dose-Response Relationship, Drug , Fenofibrate/pharmacology , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Homozygote , Humans , Hyperlipidemias/metabolism , In Vitro Techniques , Insulin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Lipid Metabolism , Liver/enzymology , Male , Mice , Mice, Transgenic , Models, Chemical , Protein Binding , Protein Isoforms , RNA, Messenger/metabolism , Rats , Rosiglitazone , Thiazolidinediones/pharmacology , Transfection , Triglycerides/metabolism , Two-Hybrid System Techniques
4.
J Neurochem ; 91(6): 1249-59, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15584902

ABSTRACT

Beta-amyloid peptides (Abeta) are produced by a sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. The lack of Abeta production in beta-APP cleaving enzyme (BACE1)(-/-) mice suggests that BACE1 is the principal beta-secretase in mammalian neurons. Transfection of human APP and BACE1 into neurons derived from wild-type and BACE1(-/-) mice supports cleavage of APP at the canonical beta-secretase site. However, these studies also revealed an alternative BACE1 cleavage site in APP, designated as beta', resulting in Abeta peptides starting at Glu11. The apparent inability of human BACE1 to make this beta'-cleavage in murine APP, and vice versa, led to the hypothesis that this alternative cleavage was species-specific. In contrast, the results from human BACE1 transgenic mice demonstrated that the human BACE1 is able to cleave the endogenous murine APP at the beta'-cleavage site. To address this discrepancy, we designed fluorescent resonance energy transfer peptide substrates containing the beta- and beta'-cleavage sites within human and murine APP to compare: (i) the enzymatic efficiency; (ii) binding kinetics of a BACE1 active site inhibitor LY2039911; and (iii) the pharmacological profiles for human and murine recombinant BACE1. Both BACE1 orthologs were able to cleave APP at the beta- and beta'-sites, although with different efficiencies. Moreover, the inhibitory potency of LY2039911 toward recombinant human and native BACE1 from mouse or guinea pig was indistinguishable. In summary, we have demonstrated, for the first time, that recombinant BACE1 can recognize and cleave APP peptide substrates at the postulated beta'-cleavage site. It does not appear to be a significant species specificity to this cleavage.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Amino Acid Sequence , Amyloid Precursor Protein Secretases , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Cell Line , Endopeptidases , Guinea Pigs , Humans , Kinetics , Mice , Molecular Conformation , Molecular Sequence Data , Recombinant Proteins/antagonists & inhibitors , Species Specificity
5.
J Med Chem ; 45(20): 4559-70, 2002 Sep 26.
Article in English | MEDLINE | ID: mdl-12238935

ABSTRACT

The first potent inhibitors of glutamate racemase (MurI) enzyme that show whole cell antibacterial activity are described. Optically pure 4-substituted D-glutamic acid analogues with (2R,4S) stereochemistry and bearing aryl-, heteroaryl-, cinnamyl-, or biaryl-methyl substituents represent a novel class of glutamate racemase inhibitors. Exploration of the D-Glu core led to the identification of lead compounds (-)-8 and 10. 2-Naphthylmethyl derivative 10 was found to be a potent competitive inhibitor of glutamate racemase activity (K(i) = 16 nM, circular dichroism assay; IC(50) = 0.1 microg/mL high-performance liquid chromatography (HPLC) assay). Thorough structure-activity relationship (SAR) studies led to benzothienyl derivatives such as 69 and 74 with increased potency (IC(50) = 0.036 and 0.01 microg/mL, respectively, HPLC assay). These compounds showed potent whole cell antibacterial activity against S. pneumoniae PN-R6, and good correlation with the enzyme assay. Compounds 69, 74 and biaryl derivative 52 showed efficacy in an in vivo murine thigh infection model against Streptococcus pneumoniae. Data described herein suggest that glutamate racemase may be a viable target for developing new antibacterial agents.


Subject(s)
Amino Acid Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Glutamates/chemical synthesis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutamates/chemistry , Glutamates/pharmacology , Mice , Microbial Sensitivity Tests , Pneumococcal Infections/drug therapy , Stereoisomerism , Streptococcus pneumoniae/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...