Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Sex Differ ; 14(1): 80, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950270

ABSTRACT

BACKGROUND: Sex differences have been observed in several brain regions for the molecular mechanisms involved in baseline (resting) and memory-related processes. The ubiquitin proteasome system (UPS) is a major protein degradation pathway in cells. Sex differences have been observed in lysine-48 (K48)-polyubiquitination, the canonical degradation mark of the UPS, both at baseline and during fear memory formation within the amygdala. Here, we investigated when, how, and why these baseline sex differences arise and whether both sexes require the K48-polyubiquitin mark for memory formation in the amygdala. METHODS: We used a combination of molecular, biochemical and proteomic approaches to examine global and protein-specific K48-polyubiquitination and DNA methylation levels at a major ubiquitin coding gene (Uba52) at baseline in the amygdala of male and female rats before and after puberty to determine if sex differences were developmentally regulated. We then used behavioral and genetic approaches to test the necessity of K48-polyubiquitination in the amygdala for fear memory formation. RESULTS: We observed developmentally regulated baseline differences in Uba52 methylation and total K48-polyubiquitination, with sexual maturity altering levels specifically in female rats. K48-polyubiquitination at specific proteins changed across development in both male and female rats, but sex differences were present regardless of age. Lastly, we found that genetic inhibition of K48-polyubiquitination in the amygdala of female, but not male, rats impaired fear memory formation. CONCLUSIONS: These results suggest that K48-polyubiquitination differentially targets proteins in the amygdala in a sex-specific manner regardless of age. However, sexual maturity is important in the developmental regulation of K48-polyubiquitination levels in female rats. Consistent with these data, K48-polyubiquitin signaling in the amygdala is selectively required to form fear memories in female rats. Together, these data indicate that sex-differences in baseline K48-polyubiquitination within the amygdala are developmentally regulated, which could have important implications for better understanding sex-differences in molecular mechanisms involved in processes relevant to anxiety-related disorders such as post-traumatic stress disorder (PTSD).


Male and female brains have differences in size, development, and cellular processes. Further, males and females have differences in likelihood of developing certain anxiety-related disorders, such as post-traumatic stress disorder (PTSD). We previously observed sex differences in a cellular mechanism that controls the destruction of proteins via tagging by the protein modifier ubiquitin in resting and behaviorally trained animals. We found that adult female rats "ubiquitinated" different proteins during learning and had more ubiquitin than male rats at rest in the amygdala, the brain region that controls emotional regulation. This study investigated if the sex difference in ubiquitin at rest changed as animals age, including the proteins being ubiquitinated and how the amount of ubiquitin was controlled. We also investigated if male and female rats need ubiquitin for memory formation. We found that males and females ubiquitinate different proteins, but that aging also contributes to changes in this, suggesting that sexual maturity may be important for controlling the amount of ubiquitin in females. Lastly, we found that only female rats needed ubiquitin in the amygdala for forming a fear memory. These results are important for understanding the role of ubiquitin activity at different developmental stages and for forming fear-based memories in both sexes. Since females are more likely to develop PTSD than males, these data could help understand how different cellular processes work together in PTSD development to create better treatment options.


Subject(s)
Polyubiquitin , Proteasome Endopeptidase Complex , Rats , Female , Male , Animals , Proteasome Endopeptidase Complex/metabolism , Polyubiquitin/chemistry , Polyubiquitin/metabolism , Sex Characteristics , Proteomics , Ubiquitin/chemistry , Ubiquitin/metabolism , Amygdala/metabolism
2.
Nutr Neurosci ; 26(4): 290-302, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35282800

ABSTRACT

OBJECTIVES: Previous work has shown that exposure to a high fat diet dysregulates the protein degradation process in the hypothalamus of male rodents. However, whether this occurs in a sex-independent manner is unknown. The objective of this study was to determine the effects of a short-term obesogenic diet on the ubiquitin-proteasome mediated protein degradation process in the hypothalamus of female rats. METHODS: We fed young adult female rats a high fat diet or standard rat chow for 7 weeks. At the end of the 7th week, animals were euthanized and hypothalamus nuclear and cytoplasmic fractions were collected. Proteasome activity and degradation-specific (K48) ubiquitin signaling were assessed. Additionally, we transfected female rats with CRISPR-dCas9-VP64 plasmids in the hypothalamus prior to exposure to the high fat diet in order to increase proteasome activity and determine the role of reduced proteasome function on weight gain from the obesogenic diet. RESULTS: We found that across the diet period, females gained weight significantly faster on the high fat diet than controls and showed dynamic downregulation of proteasome activity, decreases in proteasome subunit expression and an accumulation of degradation-specific K48 polyubiquitinated proteins in the hypothalamus. Notably, while our CRISPR-dCas9 manipulation was able to selectively increase some forms of proteasome activity, it was unable to prevent diet-induced proteasome downregulation or abnormal weight gain. CONCLUSIONS: Collectively, these results reveal that acute exposure to an obesogenic diet causes reductions in the protein degradation process in the hypothalamus of females.


Subject(s)
Proteasome Endopeptidase Complex , Weight Gain , Rats , Animals , Male , Female , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Ubiquitins/metabolism
3.
Behav Brain Res ; 430: 113928, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35597476

ABSTRACT

Strong evidence has implicated ubiquitin signaling in the process of fear memory formation. While less abundant than ubiquitination, evidence suggests that protein SUMOylation may also be involved in fear memory formation in neurons. However, the importance of amygdala protein SUMOylation in fear memory formation has never been directly examined. Furthermore, while recent evidence indicates that males and females differ significantly in the requirement for ubiquitin signaling during fear memory formation, whether sex differences also exist in the importance of protein SUMOylation to this process remains unknown. Here we found that males and females differ in the requirement for protein SUMOylation in the amygdala during fear memory formation. Western blot analysis revealed that while females had higher resting levels of SUMOylation, both sexes showed global increases following fear conditioning. However, SUMOylation-specific proteomic analysis revealed that only females have increased targeting of individual proteins by SUMOylation following fear conditioning, some of which were heat shock proteins. This suggests that protein SUMOylation is more robustly engaged in the amygdala of females following fear conditioning. In vivo siRNA mediated knockdown of Ube2i, the coding gene for the essential E2 ligase for SUMOylation conjugation, in the amygdala impaired fear memory in males without any effect in females. Importantly, higher siRNA concentrations than what was needed to impair memory in males reduced Ube2i levels in the amygdala of females but resulted in an increase in SUMOylation levels, suggesting a compensatory effect in females that was not observed in males. Collectively, these data reveal a novel, sex-specific role for protein SUMOylation in the amygdala during fear memory formation and expand our understanding of how ubiquitin-like signaling regulates memory formation.


Subject(s)
Proteomics , Sumoylation , Amygdala/metabolism , Fear/physiology , Female , Humans , Male , RNA, Small Interfering/metabolism , Ubiquitins/metabolism
4.
Front Mol Neurosci ; 14: 716284, 2021.
Article in English | MEDLINE | ID: mdl-34658783

ABSTRACT

Ubiquitin-proteasome mediated protein degradation has been widely implicated in fear memory formation in the amygdala. However, to date, the protein targets of the proteasome remain largely unknown, limiting our understanding of the functional significance for protein degradation in fear memory formation. Additionally, whether similar proteins are targeted by the proteasome between sexes has yet to be explored. Here, we combined a degradation-specific K48 Tandem Ubiquitin Binding Entity (TUBE) with liquid chromatography mass spectrometry (LC/MS) to identify the target substrates of the protein degradation process in the amygdala of male and female rats following contextual fear conditioning. We found that males (43) and females (77) differed in the total number of proteins that had significant changes in K48 polyubiquitin targeting in the amygdala following fear conditioning. Many of the identified proteins (106) had significantly reduced levels in the K48-purified samples 1 h after fear conditioning, suggesting active degradation of the substrate due to learning. Interestingly, only 3 proteins overlapped between sexes, suggesting that targets of the protein degradation process may be sex-specific. In females, many proteins with altered abundance in the K48-purified samples were involved in vesicle transport or are associated with microtubules. Conversely, in males, proteins involved in the cytoskeleton, ATP synthesis and cell signaling were found to have significantly altered abundance. Only 1 protein had an opposite directional change in abundance between sexes, LENG1, which was significantly enhanced in males while lower in females. This suggests a more rapid degradation of this protein in females during fear memory formation. Interestingly, GFAP, a critical component of astrocyte structure, was a target of K48 polyubiquitination in both males and females, indicating that protein degradation is likely occurring in astrocytes following fear conditioning. Western blot assays revealed reduced levels of these target substrates following fear conditioning in both sexes, confirming that the K48 polyubiquitin was targeting these proteins for degradation. Collectively, this study provides strong evidence that sex differences exist in the protein targets of the degradation process in the amygdala following fear conditioning and critical information regarding how ubiquitin-proteasome mediated protein degradation may contribute to fear memory formation in the brain.

5.
Learn Mem ; 28(8): 248-253, 2021 08.
Article in English | MEDLINE | ID: mdl-34266989

ABSTRACT

Strong evidence supports a role for protein degradation in fear memory formation. However, these data have been largely done in only male animals. Here, we found that following contextual fear conditioning, females, but not males, had increased levels of proteasome activity and K48 polyubiquitin protein targeting in the dorsal hippocampus, the latter of which occurred at chaperones or RNA processing proteins. In vivo CRISPR-dCas9-mediated repression of protein degradation in the dorsal hippocampus impaired contextual fear memory in females, but not males. These results suggest a sex-specific role for protein degradation in the hippocampus during the consolidation of a contextual fear memory.


Subject(s)
Fear , Hippocampus , Animals , Female , Male , Proteolysis
6.
Biol Psychiatry ; 89(12): 1176-1187, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33934885

ABSTRACT

BACKGROUND: Posttranslational histone modifications play a critical role in the regulation of gene transcription underlying synaptic plasticity and memory formation. One such epigenetic change is histone ubiquitination, a process that is mediated by the ubiquitin-proteasome system in a manner similar to that by which proteins are normally targeted for degradation. However, histone ubiquitination mechanisms are poorly understood in the brain and in learning. In this article, we describe a new role for the ubiquitin-proteasome system in histone crosstalk, showing that learning-induced monoubiquitination of histone H2B (H2Bubi) is required for increases in the transcriptionally active H3 lysine 4 trimethylation (H3K4me3) mark at learning-related genes in the hippocampus. METHODS: Using a series of molecular, biochemical, electrophysiological, and behavioral experiments, we interrogated the effects of short interfering RNA-mediated knockdown and CRISPR (clustered regularly interspaced short palindromic repeats)-mediated upregulation of ubiquitin ligases, deubiquitinating enzymes and histone methyltransferases in the rat dorsal hippocampus during memory consolidation. RESULTS: We show that H2Bubi recruits H3K4me3 through a process that is dependent on the 19S proteasome subunit RPT6 and that a loss of H2Bubi in the hippocampus prevents learning-induced increases in H3K4me3, gene transcription, synaptic plasticity, and memory formation. Furthermore, we show that CRISPR-dCas9-mediated increases in H2Bubi promote H3K4me3 and memory formation under weak training conditions and that promoting histone methylation does not rescue memory impairments resulting from loss of H2Bubi. CONCLUSIONS: These results suggest that H2B ubiquitination regulates histone crosstalk in learning by way of nonproteolytic proteasome function, demonstrating a novel mechanism by which histone modifications are coordinated in response to learning.


Subject(s)
Histones , Proteasome Endopeptidase Complex , Animals , Chromatin , Histones/metabolism , Methylation , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rats , Ubiquitination
7.
Neurobiol Learn Mem ; 180: 107404, 2021 04.
Article in English | MEDLINE | ID: mdl-33609735

ABSTRACT

Over the last decade, strong evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system is critical for fear memory formation in the amygdala. However, this work has been done primarily in males, leaving unanswered questions about whether females also require protein degradation during fear memory formation. Here, we found that male and female rats differed in their engagement and regulation of, but not need for, protein degradation in the amygdala during fear memory formation. Male, but not female, rats had increased protein degradation in the nuclei of amygdala cells after fear conditioning. Conversely, females had elevated baseline levels of overall ubiquitin-proteasome activity in amygdala nuclei. Gene expression and DNA methylation analyses identified that females had increased baseline expression of the ubiquitin coding gene Uba52, which had increased DNA 5-hydroxymethylation (5hmc) in its promoter region, indicating a euchromatin state necessary for increased levels of ubiquitin in females. Consistent with this, persistent CRISPR-dCas9 mediated silencing of Uba52 and proteasome subunit Psmd14 in the amygdala reduced baseline protein degradation levels and impaired fear memory in male and female rats, while enhancing baseline protein degradation in the amygdala of both sexes promoted fear memory formation. These results suggest that while both males and females require protein degradation in the amygdala for fear memory formation, they differ in their baseline regulation and engagement of this process following learning. These results have important implications for understanding the etiology of sex-related differences in fear memory formation.


Subject(s)
Amygdala/metabolism , Fear , Memory/physiology , Proteasome Endopeptidase Complex/genetics , Proteolysis , Animals , DNA Methylation , Epigenesis, Genetic , Female , Learning , Male , Rats , Ribosomal Proteins/genetics , Sex Characteristics , Sex Factors , Ubiquitins/genetics
8.
Behav Brain Res ; 393: 112787, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32603798

ABSTRACT

Studies have shown that long-term exposure to high fat and other obesogenic diets results in insulin resistance and altered blood brain barrier permeability, dysregulation of intracellular signaling mechanisms, changes in DNA methylation levels and gene expression, and increased oxidative stress and neuroinflammation in the hippocampus, all of which are associated with impaired spatial memory. The ubiquitin-proteasome system controls the majority of protein degradation in cells and is a critical regulator of synaptic plasticity and memory formation. Yet, whether protein degradation in the hippocampus becomes dysregulated following weight gain and is associated with obesity-induced memory impairments is unknown. Here, we used a high fat diet procedure in combination with behavioral and subcellular fractionation protocols and a variety of biochemical assays to determine if ubiquitin-proteasome activity becomes altered in the hippocampus during obesity development and whether this is associated with impaired spatial memory. We found that only 6 weeks of exposure to a high fat diet was sufficient to impair performance on an object location task in rats and resulted in dynamic dysregulation of ubiquitin-proteasome activity in the nucleus and cytoplasm of cells in the hippocampus. Furthermore, these changes in the protein degradation process extended into cortical regions also involved in spatial memory formation. Collectively, these results indicate that weight gain-induced memory impairments may be due to altered ubiquitin-proteasome signaling that occurs during the early stages of obesity development.


Subject(s)
Hippocampus/metabolism , Obesity/metabolism , Obesity/psychology , Proteolysis , Spatial Memory/physiology , Animals , Diet, High-Fat , Male , Rats, Sprague-Dawley
9.
Neuroscience ; 418: 1-14, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31449987

ABSTRACT

The ubiquitin-proteasome system (UPS) controls the degradation of ~90% of short-lived proteins in cells and is involved in activity- and learning-dependent synaptic plasticity in the brain. Calcium/calmodulin dependent protein kinase II (CaMKII) and Protein Kinase A (PKA) can regulate activity of the proteasome. However, there have been a number of conflicting reports regarding under what conditions CaMKII and PKA regulate proteasome activity in the brain. Furthermore, this work has been done exclusively in males, leaving questions about whether these kinases also regulate the proteasome in females. Here, using subcellular fractionation protocols in combination with in vitro pharmacology and proteasome activity assays, we investigated the conditions under which CaMKII and PKA regulate proteasome activity in the brains of male and female rats. In males, nuclear proteasome chymotrypsin activity was regulated by PKA in the amygdala but CaMKII in the hippocampus. Conversely, in females CaMKII regulated nuclear chymotrypsin activity in the amygdala, but not hippocampus. Additionally, in males CaMKII and PKA regulated proteasome trypsin activity in the cytoplasm of hippocampal, but not amygdala cells, while in females both CaMKII and PKA could regulate this activity in the nucleus of cells in both regions. Proteasome peptidylglutamyl activity was regulated by CaMKII and PKA activity in the nuclei of amygdala and hippocampus cells in males. However, in females PKA regulated nuclear peptidylglutamyl activity in the amygdala, but not hippocampus. Collectively, these results suggest that CaMKII- and PKA-dependent regulation of proteasome activity in the brain varies significantly across subcellular compartments and between males and females.


Subject(s)
Brain/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , Female , Male , Neuronal Plasticity/physiology , Rats, Sprague-Dawley , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...