Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Evol ; 54(2): 187-95, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18045652

ABSTRACT

Molar enamel thickness has played an important role in the taxonomic, phylogenetic, and dietary assessments of fossil primate teeth for nearly 90 years. Despite the frequency with which enamel thickness is discussed in paleoanthropological discourse, methods used to attain information about enamel thickness are destructive and record information from only a single plane of section. Such semidestructive planar methods limit sample sizes and ignore dimensional data that may be culled from the entire length of a tooth. In light of recently developed techniques to investigate enamel thickness in 3D and the frequent use of enamel thickness in dietary and phylogenetic interpretations of living and fossil primates, the study presented here aims to produce and make available to other researchers a database of 3D enamel thickness measurements of primate molars (n=182 molars). The 3D enamel thickness measurements reported here generally agree with 2D studies. Hominoids show a broad range of relative enamel thicknesses, and cercopithecoids have relatively thicker enamel than ceboids, which in turn have relatively thicker enamel than strepsirrhine primates, on average. Past studies performed using 2D sections appear to have accurately diagnosed the 3D relative enamel thickness condition in great apes and humans: Gorilla has the relatively thinnest enamel, Pan has relatively thinner enamel than Pongo, and Homo has the relatively thickest enamel. Although the data set presented here has some taxonomic gaps, it may serve as a useful reference for researchers investigating enamel thickness in fossil taxa and studies of primate gnathic biology.


Subject(s)
Dental Enamel/anatomy & histology , Molar/anatomy & histology , Primates/anatomy & histology , Animals , Dental Enamel/diagnostic imaging , Humans , Imaging, Three-Dimensional , Molar/diagnostic imaging , Tomography, X-Ray Computed
2.
J Hum Evol ; 53(3): 292-301, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17582465

ABSTRACT

The shape of the enamel-dentine junction (EDJ) in primate molars is regarded as a potential indicator of phylogenetic relatedness because it may be morphologically more conservative than the outer enamel surface (OES), and it may preserve vestigial features (e.g., cuspules, accessory ridges, and remnants of cingula) that are not manifest at the OES. Qualitative accounts of dentine-horn morphology occasionally appear in character analyses, but little has been done to quantify EDJ shape in a broad taxonomic sample. In this study, we examine homologous planar sections of maxillary molars to investigate whether measurements describing EDJ morphology reliably group extant anthropoid taxa, and we extend this technique to a small sample of fossil catarrhine molars to assess the utility of these measurements in the classification of fossil teeth. Although certain aspects of the EDJ are variable within a taxon, a taxon-specific cross-sectional EDJ configuration predominates. A discriminant function analysis classified extant taxa successfully, suggesting that EDJ shape may a reliable indicator of phyletic affinity. When considered in conjunction with aspects of molar morphology, such as developmental features and enamel thickness, EDJ shape may be a useful tool for the taxonomic assessment of fossil molars.


Subject(s)
Dental Enamel/anatomy & histology , Dentin/anatomy & histology , Haplorhini/anatomy & histology , Molar/anatomy & histology , Animals , Anthropometry , Cercopithecidae/anatomy & histology , Cercopithecidae/classification , Haplorhini/classification , Hominidae/anatomy & histology , Hominidae/classification , Platyrrhini/anatomy & histology , Platyrrhini/classification
3.
J Hum Evol ; 48(6): 575-92, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15927661

ABSTRACT

Enamel thickness has figured prominently in discussions of hominid origins for nearly a century, although little is known about its intra-taxon variation. It has been suggested that enamel thickness increases from first to third molars, perhaps due to varying functional demands or developmental constraints, but this has not been tested with appropriate statistical methods. We quantified enamel cap area (c), dentine area (b), and enamel-dentine junction length (e) in coronal planes of sections through the mesial and distal cusps in 57 permanent molars of Pan and 59 of Pongo, and calculated average (c/e) and relative enamel thickness (([c/e]/ radicalb) * 100). Posteriorly increasing or decreasing trends in each variable and average (AET) and relative enamel thickness (RET) were tested among molars in the same row. Differences between maxillary and mandibular analogues and between mesial and distal sections of the same tooth were also examined. In mesial sections of both genera, enamel cap area significantly increased posteriorly, except in Pan maxillary sections. In distal sections of maxillary teeth, trends of decreasing dentine area were significant in both taxa, possibly due to hypocone reduction. Significant increases in AET and RET posteriorly were found in all comparisons, except for AET in Pongo distal maxillary sections. Several significant differences were found between maxillary and mandibular analogues in both taxa. Relative to their mesial counterparts, distal sections showed increased enamel cap area and/or decreased dentine area, and thus increased AET and RET. This study indicates that when AET and RET are calculated from samples of mixed molars, variability is exaggerated due to the lumping of tooth types. To maximize taxonomic discrimination using enamel thickness, tooth type and section plane should be taken into account. Nonetheless, previous findings that African apes have relatively thinner enamel than Pongo is supported for certain molar positions.


Subject(s)
Dental Enamel/anatomy & histology , Hominidae/anatomy & histology , Molar/anatomy & histology , Animals , Gorilla gorilla/anatomy & histology , Humans , Odontometry , Pan troglodytes/anatomy & histology , Pongo pygmaeus/anatomy & histology
4.
J Hum Evol ; 46(5): 551-77, 2004 May.
Article in English | MEDLINE | ID: mdl-15120265

ABSTRACT

This study examined enamel thickness and dental development in Graecopithecus freybergi (=Ouranopithecus macedoniensis), a late Miocene hominoid from Greece. Comparative emphasis was placed on Proconsul, Afropithecus, Dryopithecus, Lufengpithecus, and Gigantopithecus, fossil apes that vary in enamel thickness and patterns of development. In addition, comparisons were made with Paranthropus to investigate reported similarities in enamel thickness. Several sections of a right lower third molar were generated, from which enamel thickness and aspects of the enamel and dentine microstructure were determined. Data from parallel sections shed light on the effects of section obliquity, which may influence determination of both enamel thickness and crown formation time. Graecopithecus has relatively thick enamel, greater than any fossil ape but less than Paranthropus, with which it does show similarity in prism path and Hunter-Schreger band morphology. Aspects of enamel microstructure, including the periodicity and daily secretion rate, are similar to most extant and fossil apes, especially Afropithecus. Total crown formation time was estimated to be 3.5 years, which is greater than published values for modern Homo, similar to Pan, and less than Gigantopithecus. Data on dentine secretion and extension rates suggest that coronal dentine formation was relatively slow, but comparative data are very limited. Graecopithecus shares a crown formation pattern with several thick-enamelled hominoids, in which cuspal enamel makes up a very large portion of crown area, is formed by a large cell cohort, and is formed in less than half of the total time of formation. In Paranthropus, this pattern appears to be even more extreme, which may result in thicker enamel formed in an even shorter time. Developmental similarities between Paranthropus and Graecopithecus are interpreted to be parallelisms due to similarities in the mechanical demands of their diets.


Subject(s)
Hominidae/growth & development , Tooth/growth & development , Animals , Dental Enamel/anatomy & histology , Dentition , Fossils , Greece , Humans
5.
Ann Anat ; 186(5-6): 479-85, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15646281

ABSTRACT

The external shape and thickness of the enamel component of primate molars have been employed extensively in phylogenetic studies of primate relationships. The dentine component of the molar crown also has been suggested to be indicative of phylogenetic relationships, but few studies have quantified dentine morphology in order to evaluate this possibility. To explore the utility of dentine shape as an indicator of phylogenetic affinity, a two-dimensional geometric morphometric analysis (EDMA-II) was performed using nine homologous landmarks on a sample of sectioned maxillary molars of extant ceboid, cercopithecoid, and hominoid primates. Results indicate that dentine shape (the configuration of the enamel-dentine junction, or EDJ) can distinguish taxa at every taxonomic level examined, including superfamilies, subfamilies, and closely related genera and species. This supports the idea that dentine morphology may be useful for phylogenetic studies. It is further suggested that the morphology of the EDJ may be more conservative than enamel morphology, and perhaps better-suited to phylogenetic studies. Among the samples studied, cercopithecoid primates have a unique dentine shape, and it is suggested that the development of bilophodont molars may be related to the distinctive EDJ configuration in cercopithecoids.


Subject(s)
Dentin/anatomy & histology , Primates/anatomy & histology , Animals , Cebidae/anatomy & histology , Cercopithecidae/anatomy & histology , Hominidae/anatomy & histology , Humans , Maxilla/anatomy & histology , Models, Biological , Molar/anatomy & histology , Phylogeny , Species Specificity
6.
J Hum Evol ; 45(5): 351-67, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14624746

ABSTRACT

Many living primates that feed on hard food have been observed to have thick-enameled molars. Among platyrrhine primates, members of the tribe Pitheciini (Cacajao, Chiropotes, and Pithecia) are the most specialized seed and nut predators, and Cebus apella also includes exceptionally hard foods in its diet. To examine the hypothesized relationship between thick enamel and hard-object feeding, we sectioned small samples of molars from the platyrrhine primates Aotus trivergatus, Ateles paniscus, Callicebus moloch, Cebus apella, Cacajao calvus, Chiropotes satanas, Pithecia monachus, and Pithecia pithecia. We measured relative enamel thickness and examined enamel microstructure, paying special attention to the development of prism decussation and its optical manifestation, Hunter-Schreger Bands (HSB). Cebus apella has thick enamel with well-defined but sinuous HSB overlain by a substantial layer of radial prisms. Aotus and Callicebus have thin enamel consisting primarily of radial enamel with no HSB, Ateles has thin enamel with moderately developed HSB and an outer layer of radial prisms, and the thin enamel of the pitheciins (Cacajao, Chiropotes, and Pithecia) has extremely well-defined HSB. Among platyrrhines, two groups that feed on hard objects process these hard foods in different ways. Cebus apella masticates hard and brittle seeds with its thick-enameled cheek teeth. Pitheciin sclerocarpic foragers open hard husks with their canines but chew relatively soft and pliable seeds with their molars. These results reveal that thick enamel per se is not a prerequisite for hard object feeding. The Miocene hominoid Kenyapithecus may have included hard objects in its diet, but its thick-enameled molars indicate that its feeding adaptations differed from those of the pitheciins. The morphology of both the anterior and posterior dentition, including enamel thickness and microstructure, should be taken into consideration when inferring the dietary regime of fossil species.


Subject(s)
Adaptation, Physiological/physiology , Cebidae/anatomy & histology , Dental Enamel/anatomy & histology , Dental Enamel/ultrastructure , Diet , Hominidae/anatomy & histology , Animals , Feeding Behavior/physiology , Humans , Molar/anatomy & histology , Molar/ultrastructure , Paleodontology/methods
7.
J Hum Evol ; 44(3): 283-306, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12657518

ABSTRACT

Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.


Subject(s)
Biological Evolution , Dental Enamel/anatomy & histology , Hominidae , Molar/anatomy & histology , Animals , Anthropology, Physical , Classification , Fossils , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...