Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Med Virol ; 80(3): 430-3, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18205212

ABSTRACT

This study reports the first isolation and partial genetic characterization of Chikungunya virus (CHIKV) from patients during a 2006-2007 dengue-like syndrome outbreak in Gabon. The isolated viruses were phylogenetically close to strains isolated in the Democratic Republic of the Congo 7 years ago and to strains isolated more recently in Cameroon. These results indicate a continuing circulation of a genetically stable CHIKV population during 7 years in Central Africa.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Chikungunya virus/isolation & purification , Adolescent , Adult , Alphavirus Infections/diagnosis , Chikungunya virus/classification , Chikungunya virus/genetics , Child , Disease Outbreaks , Female , Gabon/epidemiology , Humans , Male , Middle Aged , Phylogeny
2.
J Strength Cond Res ; 21(4): 1233-7, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18076263

ABSTRACT

We herein examined whether immediate muscular activity (active recovery) after stretching decreased stretch-induced strength deficits in human muscles. Our within-subject study included 8 subjects who were used as their own controls. For each subject, both legs were subjected to the same warm-up and stretching treatments, and then one leg was exposed to active recovery (experimental treatment) while the other was allowed to recover passively (control). Unilateral maximal voluntary contraction (MVC) of knee extensors was measured at baseline, poststretching, and postrecovery to monitor strength evolution. Our results revealed that the MVC strength at the baseline time point for control (590.8 +/- 104.2) and treated (602.2 +/- 112.7) legs decreased poststretching by 8.0 and 8.9%, respectively, and further decreased postrecovery by 1.3 and 1.2%, respectively. Maximal voluntary contraction strength tests demonstrated very good reliability, having intraclass coefficients of correlation ranging from 0.92-0.98. Mixed analysis of variance showed that the stretching program yielded significantly increased flexibility (p < 0.01) and significantly decreased MVC (p < 0.001) in both legs. The over-time variability between legs was marginal (1%), and no significant between-leg differences were observed. Indeed, the improvement in strength restoration due to active vs. passive recovery was -0.5 +/- 15 N, which was significantly lower (p < 0.01; 1-tailed t-test) than the amount of strength inhibition (32.6 N), estimated as 60% of the overall strength deficit (54.3 +/- 29.7 N). These results confirm that significant strength is lost poststretching but fail to show greater improvement in strength following active vs. passive recovery. Collectively, the present findings indicate that, contrary to the belief of many coaches, muscular exercises during the poststretching period are unlikely to minimize stretch-induced strength deficits.


Subject(s)
Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle Stretching Exercises/methods , Muscle, Skeletal/physiology , Adult , Female , Humans , Lower Extremity/physiology , Male , Recovery of Function , Reference Values
3.
Med Sci Sports Exerc ; 36(3): 498-503, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15076793

ABSTRACT

PURPOSE: The aims of this study are twofold: first, to analyze the influence of age, body mass, and lean leg volume (LLV) on short-term leg peak power (Pmax) of young females and males during growth using multilevel regression analysis and, second, to compare the regression results of boys and girls. METHODS: The individuals were 100 girls and 109 boys aged 7.5-17.5 yr old. Pmax, LLV, and mass were determined on two occasions using the cycling force-velocity test. The optimal force (Fopt) and pedaling frequency (Vopt) corresponded to the force and pedaling frequency at Pmax. RESULTS: It was observed that the increase of Pmax doesn't depend on gender until the age of 14. From that age, Pmax values are significantly lower in girls than in boys. In girls, LLV is the main predictor of Pmax variance (68%; P < 0.001), whereas in boys it is age (57%; P < 0.001). Results of ANCOVA were that for the same leg length (LL), Vopt is significantly (P < 0.001) higher in boys than in girls. It also indicated that for the same LLV, there are no significant (P > 0.05) gender differences of Fopt. CONCLUSION: These results illustrated that during the growth period, the increase of Pmax is significantly higher in boys than in girls. Qualitative muscular factors (Type II fiber, glycolytic ability, motor coordination, and motor unit activation) may account for the significantly higher Pmax production in boys than in girls. Precisely, the gender differences might be explained by neuromuscular determinants of contraction velocity. In conclusion, children should develop their neuromuscular determinants of contraction velocity rather than their lean leg volume.


Subject(s)
Growth/physiology , Muscles/physiology , Task Performance and Analysis , Adolescent , Child , Cross-Sectional Studies , Exercise Test/methods , Female , Humans , Male , Multivariate Analysis , Sex Factors
4.
Med Sci Sports Exerc ; 35(8): 1436-40, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12900701

ABSTRACT

PURPOSE: The present study was undertaken to examine changes of cycling peak power (P(max)), optimal pedaling frequency (Vopt), and optimal pedaling force (Fopt) with age in subjects with the same lean leg volume (LLV), leg length (LL), and percentage body fat (%BF). METHOD: A total of 132 males aged 9.5-16.5 volunteered for this study. The population was divided into prepubertal (G1), pubertal (G2), and postpubertal (G3) groups. Within G1, G2, and G3, although the subjects were divided into three different age subgroups, there were no significant differences for LLV, %BF, and LL. RESULTS: Results showed that within G1, G2, and G3, P(max) increased significantly with age. Optimal velocity (Vopt) increased significantly with age in G1, whereas optimal force (Fopt) increased significantly with age into the other groups (G2 and G3). CONCLUSION: This study demonstrated that when anthropometric characteristics were controlled (LLV, LL, and %BF), P(max) and its two components (Vopt and Fopt) still increased with age. This indicates that other factors of qualitative nature have to be considered when determining P(max), Vopt, and Fopt.


Subject(s)
Adolescent/physiology , Anthropometry , Exercise/physiology , Muscle, Skeletal/physiology , Age Factors , Bicycling/physiology , Child , Growth , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...