Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38187577

ABSTRACT

Animals process a constant stream of sensory input, and to survive they must detect and respond to dangerous stimuli while ignoring innocuous or irrelevant ones. Behavioral responses are elicited when certain properties of a stimulus such as its intensity or size reach a critical value, and such behavioral thresholds can be a simple and effective mechanism to filter sensory information. For example, the acoustic startle response is a conserved and stereotyped defensive behavior induced by sudden loud sounds, but dysregulation of the threshold to initiate this behavior can result in startle hypersensitivity that is associated with sensory processing disorders including schizophrenia and autism. Through a previous forward genetic screen for regulators of the startle threshold a nonsense mutation in Cytoplasmic Fragile X Messenger Ribonucleoprotein (FMRP)-interacting protein 2 (cyfip2) was found that causes startle hypersensitivity in zebrafish larvae, but the molecular mechanisms by which Cyfip2 establishes the acoustic startle threshold are unknown. Here we used conditional transgenic rescue and CRISPR/Cas9 to determine that Cyfip2 acts though both Rac1 and FMRP pathways, but not the closely related FXR1 or FXR2, to establish the acoustic startle threshold during early neurodevelopment. To identify proteins and pathways that may be downstream effectors of Rac1 and FMRP, we performed a candidate-based drug screen that indicated that Cyfip2 can also act acutely to maintain the startle threshold branched actin polymerization and N-methyl D-aspartate receptors (NMDARs). To complement this approach, we used unbiased discovery proteomics to determine that loss of Cyfip2 alters cytoskeletal and extracellular matrix components while also disrupting oxidative phosphorylation and GABA receptor signaling. Finally, we functionally validated our proteomics findings by showing that activating GABAB receptors, which like NMDARs are also FMRP targets, restores normal startle sensitivity in cyfip2 mutants. Together, these data reveal multiple mechanisms by which Cyfip2 regulates excitatory/inhibitory balance in the startle circuit to control the processing of acoustic information.

2.
Neurotox Res ; 40(2): 347-364, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35029765

ABSTRACT

Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin ß-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.


Subject(s)
Amino Acids, Diamino , Cyanobacteria , Neurotoxicity Syndromes , Amino Acids, Diamino/toxicity , Animals , Cyanobacteria Toxins , Isomerism , Larva , Neurotoxins/toxicity , Zebrafish
3.
Toxicol Sci ; 179(2): 251-261, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33295630

ABSTRACT

Exposure to toxins produced by cyanobacteria (ie, cyanotoxins) is an emerging health concern due to their increasing prevalence and previous associations with neurodegenerative diseases including amyotrophic lateral sclerosis. The objective of this study was to evaluate the neurotoxic effects of a mixture of two co-occurring cyanotoxins, ß-methylamino-l-alanine (BMAA) and microcystin leucine and arginine (MCLR), using the larval zebrafish model. We combined high-throughput behavior-based toxicity assays with discovery proteomic techniques to identify behavioral and molecular changes following 6 days of exposure. Although neither toxin caused mortality, morphological defects, nor altered general locomotor behavior in zebrafish larvae, both toxins increased acoustic startle sensitivity in a dose-dependent manner by at least 40% (p < .0001). Furthermore, startle sensitivity was enhanced by an additional 40% in larvae exposed to the BMAA/MCLR mixture relative to those exposed to the individual toxins. Supporting these behavioral results, our proteomic analysis revealed a 4-fold increase in the number of differentially expressed proteins in the mixture-exposed group. Additionally, prediction analysis reveals activation and/or inhibition of 8 enriched canonical pathways (enrichment p-value < .01; z-score≥|2|), including ILK, Rho Family GTPase, RhoGDI, and calcium signaling pathways, which have been implicated in neurodegeneration. We also found that expression of TDP-43, of which cytoplasmic aggregates are a hallmark of amyotrophic lateral sclerosis pathology, was significantly upregulated by 5.7-fold following BMAA/MCLR mixture exposure. Together, our results emphasize the importance of including mixtures of cyanotoxins when investigating the link between environmental cyanotoxins and neurodegeneration as we reveal that BMAA and MCLR interact in vivo to enhance neurotoxicity.


Subject(s)
Amino Acids, Diamino , Zebrafish , Amino Acids, Diamino/toxicity , Animals , Cyanobacteria Toxins , Larva , Proteomics
4.
Toxicology ; 421: 74-83, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31029734

ABSTRACT

The goal of this study was to implement powerful mixture design techniques, commonly used in process optimization, to investigate enhanced adverse effects upon co-exposure to environmental cyanotoxins. Exposure to cyanobacteria, which are found ubiquitously in environmental water reservoirs, have been linked to several neurodegenerative diseases. Despite the known co-occurrence of various cyanotoxins, the majority of studies investigating this link have focused on the investigation of a single cyanotoxin, a noncanonical amino acid called ß-methylamino-L-alanine (BMAA), which poorly recapitulates an actual environmental exposure. Interactions amongst cyanotoxic compounds is an area of great concern and remains poorly understood. To this end, we describe the use of a simplex axial mixture design to screen for interactive adverse effects of cyanotoxic mixtures. Using a combination of basic toxicity assays coupled with contemporary proteomic techniques, our results show the existence of a significant (p ≤ 0.01) interaction between BMAA and its isomers aminoethyl glycine (AEG) and 2,4-diaminobutyric acid (2,4DAB). Cyanotoxic mixtures significantly decreased cell viability by an average of 19% and increased caspases 3/7 activities by an average of 110% when compared to individual cyanotoxins (p ≤ 0.05). Cyanotoxic mixtures perturbed various biological pathways associated with neurodegeneration, including inhibition of protective autophagy and activation of mitochondrial dysfunction (z-score >|2|). Additionally, exposure to mixtures perturbed important upstream regulators involved in cellular dysfunction, morbidity, and development. Taken together, our results highlight: (1) the need to study combinations of cyanotoxins when investigating the link between cyanobacteria and neurodegenerative pathologies and (2) the application of design of experiment (DoE) as an efficient methodology to study mixtures of relevant environmental toxins.


Subject(s)
Bacterial Toxins/toxicity , Cyanobacteria , Animals , Cell Line , Cell Survival/drug effects , Drug Interactions , Mice , No-Observed-Adverse-Effect Level , Proteome/drug effects , Risk Assessment/methods , Toxicity Tests/methods
5.
Proteomics ; 17(17-18)2017 Sep.
Article in English | MEDLINE | ID: mdl-28837265

ABSTRACT

The goal of this study is to investigate the molecular pathways perturbed by in vitro exposure of beta-methylamino-L-alanine (BMAA) to NSC-34 cells via contemporary proteomics. Our analysis of differentially regulated proteins reveals significant enrichment (p < 0.01) of pathways related to ER stress, protein ubiquitination, the unfolded protein response, and mitochondrial dysfunction. Upstream regulator analysis indicates that exposure to BMAA induces activation of transcription factors (X-box binding protein 1; nuclear factor 2 erythroid like 2; promyelocytic leukemia) involved in regulation of the UPR, oxidative stress, and cellular senescence. Furthermore, the authors examine the hypothesis that BMAA causes protein damage via misincorporation in place of L-Serine. The authors are unable to detect misincorporation of BMAA into protein via analysis of cellular protein, secreted protein, targeted detection of BMAA after protein hydrolysis, or through the use of in vitro protein translation kits.


Subject(s)
Amino Acids, Diamino/toxicity , Amyotrophic Lateral Sclerosis/chemically induced , Excitatory Amino Acid Agonists/toxicity , Gene Expression Regulation/drug effects , Motor Neurons/metabolism , Neuroblastoma/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cell Line , Cyanobacteria Toxins , Diet/adverse effects , Mice , Motor Neurons/pathology , Neuroblastoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...