Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 35(2): 559-70, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25589751

ABSTRACT

Cellular debris created by developmental processes or injury must be cleared by phagocytic cells to maintain and repair tissues. Cutaneous injuries damage not only epidermal cells but also the axonal endings of somatosensory (touch-sensing) neurons, which must be repaired to restore the sensory function of the skin. Phagocytosis of neuronal debris is usually performed by macrophages or other blood-derived professional phagocytes, but we have found that epidermal cells phagocytose somatosensory axon debris in zebrafish. Live imaging revealed that epidermal cells rapidly internalize debris into dynamic phosphatidylinositol 3-monophosphate-positive phagosomes that mature into phagolysosomes using a pathway similar to that of professional phagocytes. Epidermal cells phagocytosed not only somatosensory axon debris but also debris created by injury to other peripheral axons that were mislocalized to the skin, neighboring skin cells, and macrophages. Together, these results identify vertebrate epidermal cells as broad-specificity phagocytes that likely contribute to neural repair and wound healing.


Subject(s)
Axons/pathology , Epidermis/physiology , Epithelial Cells/physiology , Phagocytes/physiology , Wallerian Degeneration , Animals , Epidermal Cells , Epithelial Cells/metabolism , Phagocytes/metabolism , Phagocytosis , Phagosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Sensory Receptor Cells/pathology , Zebrafish
2.
Neural Dev ; 7: 19, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22681863

ABSTRACT

BACKGROUND: Understanding the cellular mechanisms regulating axon degeneration and regeneration is crucial for developing treatments for nerve injury and neurodegenerative disease. In neurons, axon degeneration is distinct from cell body death and often precedes or is associated with the onset of disease symptoms. In the peripheral nervous system of both vertebrates and invertebrates, after degeneration of detached fragments, axons can often regenerate to restore function. Many studies of axonal degeneration and regeneration have used in vitro approaches, but the influence of extrinsic cell types on these processes can only be fully addressed in live animals. Because of its simplicity and superficial location, the larval zebrafish posterior lateral line (pLL) nerve is an ideal model system for live studies of axon degeneration and regeneration. RESULTS: We used laser axotomy and time-lapse imaging of pLL axons to characterize the roles of leukocytes, Schwann cells and target sensory hair cells in axon degeneration and regeneration in vivo. Immune cells were essential for efficient removal of axonal debris after axotomy. Schwann cells were required for proper fasciculation and pathfinding of regenerating axons to their target cells. Intact target hair cells were not themselves required for regeneration, but chemical ablation of neuromasts caused axons to transiently deviate from their normal paths. CONCLUSIONS: Macrophages, Schwann cells, and target sensory organs are required for distinct aspects of pLL axon degeneration or regeneration in the zebrafish larva. Our work introduces a powerful vertebrate model for analyzing axonal degeneration and regeneration in the living animal and elucidating the role of extrinsic cell types in these processes.


Subject(s)
Axons/physiology , Gene Expression Regulation, Developmental/physiology , Nerve Degeneration/physiopathology , Nerve Regeneration/physiology , Neurons/cytology , Peripheral Nerves/cytology , Analysis of Variance , Animals , Animals, Genetically Modified , Axotomy , Copper/pharmacology , Copper/therapeutic use , Embryo, Nonmammalian , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Mutation/genetics , Nerve Degeneration/drug therapy , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Nerve Regeneration/drug effects , Nerve Regeneration/genetics , Oligodeoxyribonucleotides, Antisense/pharmacology , Peripheral Nerves/embryology , Proto-Oncogene Proteins/genetics , Quinazolines/pharmacology , Quinazolines/therapeutic use , Schwann Cells/cytology , Schwann Cells/drug effects , Trans-Activators/genetics , Transcription Factors/genetics , Tyrphostins/pharmacology , Tyrphostins/therapeutic use , Zebrafish , Zebrafish Proteins/genetics
3.
Development ; 137(23): 3985-94, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21041367

ABSTRACT

Fragments of injured axons that detach from their cell body break down by the molecularly regulated process of Wallerian degeneration (WD). Although WD resembles local axon degeneration, a common mechanism for refining neuronal structure, several previously examined instances of developmental pruning were unaffected by WD pathways. We used laser axotomy and time-lapse confocal imaging to characterize and compare peripheral sensory axon WD and developmental pruning in live zebrafish larvae. Detached fragments of single injured axon arbors underwent three stereotyped phases of WD: a lag phase, a fragmentation phase and clearance. The lag phase was developmentally regulated, becoming shorter as embryos aged, while the length of the clearance phase increased with the amount of axon debris. Both cell-specific inhibition of ubiquitylation and overexpression of the Wallerian degeneration slow protein (Wld(S)) lengthened the lag phase dramatically, but neither affected fragmentation. Persistent Wld(S)-expressing axon fragments directly repelled regenerating axon branches of their parent arbor, similar to self-repulsion among sister branches of intact arbors. Expression of Wld(S) also disrupted naturally occurring local axon pruning and axon degeneration in spontaneously dying trigeminal neurons: although pieces of Wld(S)-expressing axons were pruned, and some Wld(S)-expressing cells still died during development, in both cases detached axon fragments failed to degenerate. We propose that spontaneously pruned fragments of peripheral sensory axons must be removed by a WD-like mechanism to permit efficient innervation of the epidermis.


Subject(s)
Axons/pathology , Nerve Regeneration/physiology , Skin/innervation , Skin/pathology , Trigeminal Nerve/physiopathology , Wallerian Degeneration/physiopathology , Zebrafish/embryology , Aging/pathology , Animals , Axons/enzymology , Behavior, Animal , Cytoprotection , Trigeminal Nerve/pathology , Wallerian Degeneration/pathology , Zebrafish Proteins/metabolism
4.
Curr Biol ; 19(24): 2086-90, 2009 Dec 29.
Article in English | MEDLINE | ID: mdl-19962310

ABSTRACT

The structural plasticity of neurites in the central nervous system (CNS) diminishes dramatically after initial development, but the peripheral nervous system (PNS) retains substantial plasticity into adulthood. Nevertheless, functional reinnervation by injured peripheral sensory neurons is often incomplete [1-6]. To investigate the developmental control of skin reinnervation, we imaged the regeneration of trigeminal sensory axon terminals in live zebrafish larvae following laser axotomy. When axons were injured during early stages of outgrowth, regenerating and uninjured axons grew into denervated skin and competed with one another for territory. At later stages, after the establishment of peripheral arbor territories, the ability of uninjured neighbors to sprout diminished severely, and although injured axons reinitiated growth, they were repelled by denervated skin. Regenerating axons were repelled specifically by their former territories, suggesting that local inhibitory factors persist in these regions. Antagonizing the function of several members of the Nogo receptor (NgR)/RhoA pathway improved the capacity of injured axons to grow into denervated skin. Thus, as in the CNS, impediments to reinnervation in the PNS arise after initial establishment of axon arbor structure.


Subject(s)
Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Presynaptic Terminals/physiology , Sensory Receptor Cells/physiology , Skin/innervation , Trigeminal Nerve/cytology , Animals , Axotomy , DNA Primers/genetics , DNA, Complementary/genetics , Microscopy, Confocal , Mutagenesis, Site-Directed , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Trigeminal Nerve Injuries , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
5.
J Vis Exp ; (24)2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19229185

ABSTRACT

Zebrafish have long been utilized to study the cellular and molecular mechanisms of development by time-lapse imaging of the living transparent embryo. Here we describe a method to mount zebrafish embryos for long-term imaging and demonstrate how to automate the capture of time-lapse images using a confocal microscope. We also describe a method to create controlled, precise damage to individual branches of peripheral sensory axons in zebrafish using the focused power of a femtosecond laser mounted on a two-photon microscope. The parameters for successful two-photon axotomy must be optimized for each microscope. We will demonstrate two-photon axotomy on both a custom built two-photon microscope and a Zeiss 510 confocal/two-photon to provide two examples. Zebrafish trigeminal sensory neurons can be visualized in a transgenic line expressing GFP driven by a sensory neuron specific promoter (1). We have adapted this zebrafish trigeminal model to directly observe sensory axon regeneration in living zebrafish embryos. Embryos are anesthetized with tricaine and positioned within a drop of agarose as it solidifies. Immobilized embryos are sealed within an imaging chamber filled with phenylthiourea (PTU) Ringers. We have found that embryos can be continuously imaged in these chambers for 12-48 hours. A single confocal image is then captured to determine the desired site of axotomy. The region of interest is located on the two-photon microscope by imaging the sensory axons under low, non-damaging power. After zooming in on the desired site of axotomy, the power is increased and a single scan of that defined region is sufficient to sever the axon. Multiple location time-lapse imaging is then set up on a confocal microscope to directly observe axonal recovery from injury.


Subject(s)
Axons/physiology , Axotomy/methods , Microscopy, Confocal/methods , Sensory Receptor Cells/physiology , Zebrafish/embryology , Animals , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...