Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 22(1): 265, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666752

ABSTRACT

RATIONALE: αv integrins, key regulators of transforming growth factor-ß activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvß6) and fibroblasts (αvß1) in fibrotic lungs. OBJECTIVES: We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS: Selective αvß6 and αvß1, dual αvß6/αvß1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-ß cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-ß signaling. Bleomycin-challenged mice treated with dual αvß6/αvß1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS: Inhibition of integrins αvß6 and αvß1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvß6/αvß1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS: In the fibrotic lung, dual inhibition of integrins αvß6 and αvß1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-ß.


Subject(s)
Antifibrotic Agents/pharmacology , Epithelial Cells/drug effects , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Integrin alpha6beta1/antagonists & inhibitors , Lung/drug effects , Receptors, Vitronectin/antagonists & inhibitors , Animals , Bleomycin , Cell Line , Coculture Techniques , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Integrin alpha6beta1/metabolism , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Phosphorylation , Receptors, Vitronectin/metabolism , Signal Transduction , Smad3 Protein/metabolism
2.
J Pharmacol Exp Ther ; 358(3): 413-22, 2016 09.
Article in English | MEDLINE | ID: mdl-27353073

ABSTRACT

Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal lymphopoietin expression in mouse skin. Skin thinning is a major dose-limiting side effect of glucocorticoids. By contrast, repeated application of compd3 did not thin mouse skin. These findings show the potential benefits and safety of benzoxaborole PDE4 inhibitors for the treatment of psoriasis and atopic dermatitis.


Subject(s)
Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dermatitis, Atopic/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Psoriasis/drug therapy , Skin/drug effects , Skin/pathology , Administration, Topical , Animals , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Catalytic Domain , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Gene Expression Regulation/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Phosphodiesterase 4 Inhibitors/administration & dosage , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphorylation/drug effects , Psoriasis/metabolism , Psoriasis/pathology , Skin/metabolism , Thymic Stromal Lymphopoietin
3.
J Pharmacol Exp Ther ; 344(2): 436-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192653

ABSTRACT

Pro-inflammatory cytokines play a critical role in the development of autoimmune and inflammatory diseases. Targeting the cytokine environment has proven efficient for averting inflammation. In this study, we reported that 6-[4-(aminomethyl)-2-chlorophenoxyl]benzo[c][1,2]oxaborol-1(3H)-ol (AN3485), a benzoxaborole analog, inhibited TLR2-, TLR3-, TLR4-, and TLR5-mediated TNF-α, IL-1ß, and IL-6 release from human PBMCs and isolated monocytes with IC(50) values ranging from 18 to 580 nM, and the inhibition was mediated at the transcriptional level. Topical administration of AN3485 significantly reduced PMA-induced contact dermatitis and oxazolone-induced delayed-type hypersensitivity in mice, indicating its capability of penetrating skin and potential topical application in skin inflammation. Oral administration of AN3485 showed dose-dependent suppression of LPS-induced TNF-α and IL-6 production in mice with an ED(90) of 30 mg/kg. Oral AN3485, 35 mg/kg, twice a day, suppressed collagen-induced arthritis in mice over a 20-day period. The potent anti-inflammatory activity in in vitro and in vivo disease models makes AN3485 an attractive therapeutic lead for a variety of cutaneous and systemic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis/drug therapy , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Dermatitis, Allergic Contact/drug therapy , Drug Hypersensitivity/drug therapy , Hypersensitivity, Delayed/drug therapy , Toll-Like Receptors/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Arthritis/immunology , Arthritis/metabolism , Boron Compounds/administration & dosage , Boron Compounds/pharmacokinetics , Boron Compounds/toxicity , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/toxicity , Cell Survival/drug effects , Cells, Cultured , Cytokines/biosynthesis , Cytokines/metabolism , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/immunology , Dermatitis, Allergic Contact/metabolism , Dose-Response Relationship, Drug , Drug Hypersensitivity/etiology , Drug Hypersensitivity/immunology , Drug Hypersensitivity/metabolism , Female , Humans , Hypersensitivity, Delayed/chemically induced , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C
4.
Clin Cancer Res ; 16(2): 566-76, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20068098

ABSTRACT

PURPOSE: Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer. EXPERIMENTAL DESIGN: We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo and tested the ability of ispinesib to enhance the antitumor activity of approved therapies. RESULTS: In vitro, ispinesib displayed broad antiproliferative activity against a panel of 53 breast cell lines. In vivo, ispinesib produced regressions in each of five breast cancer models and tumor-free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the antitumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine and exhibited activity comparable with paclitaxel and ixabepilone. CONCLUSIONS: These findings support further clinical exploration of kinesin spindle protein inhibitors for the treatment of breast cancer.


Subject(s)
Benzamides/therapeutic use , Breast Neoplasms/drug therapy , Carcinoma/drug therapy , Kinesins/antagonists & inhibitors , Quinazolines/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Benzamides/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Female , Humans , Mice , Mice, Nude , Mice, SCID , Quinazolines/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...