Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 288(5469): 1198-201, 2000 May 19.
Article in English | MEDLINE | ID: mdl-10817987

ABSTRACT

Galileo's photopolarimeter-radiometer instrument mapped Io's thermal emission during the I24, I25, and I27 flybys with a spatial resolution of 2.2 to 300 kilometers. Mapping of Loki in I24 shows uniform temperatures for most of Loki Patera and high temperatures in the southwest corner, probably resulting from an eruption that began 1 month before the observation. Most of Loki Patera was resurfaced before I27. Pele's caldera floor has a low temperature of 160 kelvin, whereas flows at Pillan and Zamama have temperatures of up to 200 kelvin. Global maps of nighttime temperatures provide a means for estimating global heat flow.


Subject(s)
Hot Temperature , Jupiter , Space Flight , Volcanic Eruptions , Darkness , Extraterrestrial Environment , Filtration , Photometry , Sunlight
2.
Science ; 279(5357): 1672-6, 1998 03 13.
Article in English | MEDLINE | ID: mdl-9497278

ABSTRACT

The Mars Global Surveyor (MGS) z-axis accelerometer has obtained over 200 vertical structures of thermospheric density, temperature, and pressure, ranging from 110 to 170 kilometers, compared to only three previous such vertical structures. In November 1997, a regional dust storm in the Southern Hemisphere triggered an unexpectedly large thermospheric response at mid-northern latitudes, increasing the altitude of thermospheric pressure surfaces there by as much as 8 kilometers and indicating a strong global thermospheric response to a regional dust storm. Throughout the MGS mission, thermospheric density bulges have been detected on opposite sides of the planet near 90 degreesE and 90 degreesW, in the vicinity of maximum terrain heights. This wave 2 pattern may be caused by topographically-forced planetary waves propagating up from the lower atmosphere.

3.
Science ; 268(5219): 1875-9, 1995 Jun 30.
Article in English | MEDLINE | ID: mdl-17797529

ABSTRACT

The Galileo Photopolarimeter Radiometer experiment made direct photometric observations at 678 and 945 nanometers of several comet Shoemaker-Levy 9 fragments impacting with Jupiter. Initial flashes occurred at (fragment G) 18 July 1994 07:33:32, (H) 18 July 19:31:58, (L) 19 July 22:16:48, and (Q1) 20 July 20:13:52 [equivalent universal time coordinated (UTC) observed at Earth], with relative peak 945-nanometer brightnesses of 0.87, 0.67, 1.00, and 0.42, respectively. The light curves show a 2-second rise to maximum, a 10-second plateau, and an accelerating falloff. The Q1 event, observed at both wavelengths, yielded a color temperature of more than 10,000 kelvin at its peak.

4.
Science ; 265(5172): 625-31, 1994 Jul 29.
Article in English | MEDLINE | ID: mdl-17752758

ABSTRACT

The spatial organization and time dependence of Jupiter's temperatures near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

5.
Science ; 253(5027): 1536-8, 1991 Sep 27.
Article in English | MEDLINE | ID: mdl-17784097

ABSTRACT

Images of the disk of Venus, taken at wavelengths between 8 and 22 micrometers, were obtained a few days after the Galileo spacecraft's closest approach on 8 February 1990; these images show variations in the thickness of the main H(2)SO(4) cloud deck and the overlying temperature structure. Several features are qualitatively similar to those of earlier observations, such as a hot region at the south pole, surrounded by a cold ;;collar,'' and brightening toward the lower latitudes, where low-contrast banding appears. The collar does have a northern counterpart that is warmer, however. Equatorial limb darkening is quantitatively similar to that of previous observations; fairly constant at wavelengths up to 20 micrometers, where limb darkening increases substantially. In contrast to what was found in previous observations, polar and equatorial limb darkening are nearly the same at most wavelengths. A longitudinal variation is observable that is consistent with a wavenumber-2 behavior and a brightness maximum near local midnight.

6.
Science ; 252(5005): 537-42, 1991 Apr 26.
Article in English | MEDLINE | ID: mdl-17838486

ABSTRACT

The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH(4) band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and mid-latitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm mid-latitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than approximately 30,000 kilometers. The amplitudes of the waves vary on a time scale of approximately 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than +/-30 meters per second.

7.
Science ; 194(4271): 1341-4, 1976 Dec 11.
Article in English | MEDLINE | ID: mdl-17797097

ABSTRACT

Broadband thermal and reflectance observations of the martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

8.
Science ; 194(4271): 1346-51, 1976 Dec 11.
Article in English | MEDLINE | ID: mdl-17797099

ABSTRACT

Selected observations made with the Viking infrared thermal mapper after the first landing are reported. Atmospheric temperatures measured at the latitude of the Viking 2 landing site (48 degrees N) over most of a martian day reveal a diurnal variation of at least 15 K, with peak temperatures occurring near 2.2 hours after noon, implying significant absorption of sunlight in the lower 30 km of the atmosphere by entrained dust. The summit temperature of Arsia Mons varies by a factor of nearly two each day; large diurnal temperature variation is characteristic of the south Tharsis upland and implies the presence of low thermal inertia material. The thermal inertia of material on the floors of several typical large craters is found to be higher than for the surrounding terrain; this suggests that craters are somehow effective in sorting aeolian material. Brightness temperatures of the Viking 1 landing area decrease at large emission angles; the intensity of reflected sunlight shows a more complex dependence on geometry than expected, implying atmospheric as well as surface scattering.

9.
Science ; 193(4255): 780-6, 1976 Aug 27.
Article in English | MEDLINE | ID: mdl-17747779

ABSTRACT

The Viking infrared thermal mapper measures the thermal emission of the martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO(2) condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO(2) clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

SELECTION OF CITATIONS
SEARCH DETAIL
...