Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 14(1): 4828, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563106

ABSTRACT

One of the main characteristics of optical imaging systems is spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolution techniques, which aim at breaking the diffraction limit in classical systems, there is a class of quantum super-resolution techniques which leverage the non-classical nature of the optical signals radiated by quantum emitters, the so-called antibunching super-resolution microscopy. This approach can ensure a factor of [Formula: see text] improvement in the spatial resolution by measuring the n -th order autocorrelation function. The main bottleneck of the antibunching super-resolution microscopy is the time-consuming acquisition of multi-photon event histograms. We present a machine learning-assisted approach for the realization of rapid antibunching super-resolution imaging and demonstrate 12 times speed-up compared to conventional, fitting-based autocorrelation measurements. The developed framework paves the way to the practical realization of scalable quantum super-resolution imaging devices that can be compatible with various types of quantum emitters.

3.
Nano Lett ; 23(1): 25-33, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36383034

ABSTRACT

The negatively charged boron vacancy (VB-) defect in hexagonal boron nitride (hBN) with optically addressable spin states has emerged due to its potential use in quantum sensing. Remarkably, VB- preserves its spin coherence when it is implanted at nanometer-scale distances from the hBN surface, potentially enabling ultrathin quantum sensors. However, its low quantum efficiency hinders its practical applications. Studies have reported improving the overall quantum efficiency of VB- defects with plasmonics; however, the overall enhancements of up to 17 times reported to date are relatively modest. Here, we demonstrate much higher emission enhancements of VB- with low-loss nanopatch antennas (NPAs). An overall intensity enhancement of up to 250 times is observed, corresponding to an actual emission enhancement of ∼1685 times by the NPA, along with preserved optically detected magnetic resonance contrast. Our results establish NPA-coupled VB- defects as high-resolution magnetic field sensors and provide a promising approach to obtaining single VB- defects.

4.
Sci Adv ; 7(50): eabj0627, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34890236

ABSTRACT

Single-photon emitters are essential in enabling several emerging applications in quantum information technology, quantum sensing, and quantum communication. Scalable photonic platforms capable of hosting intrinsic or embedded sources of single-photon emission are of particular interest for the realization of integrated quantum photonic circuits. Here, we report on the observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates. Photophysical analysis reveals bright (>105 counts/s), stable, linearly polarized, and pure quantum emitters in SiN films with a second-order autocorrelation function value at zero time delay g(2)(0) below 0.2 at room temperature. We suggest that the emission originates from a specific defect center in SiN because of the narrow wavelength distribution of the observed luminescence peak. Single-photon emitters in SiN have the potential to enable direct, scalable, and low-loss integration of quantum light sources with a well-established photonic on-chip platform.

5.
Nano Lett ; 21(19): 8182-8189, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34606291

ABSTRACT

Two-dimensional hexagonal boron nitride (hBN) that hosts room-temperature single-photon emitters (SPEs) is promising for quantum information applications. An important step toward the practical application of hBN is the on-demand, position-controlled generation of SPEs. Strategies reported for deterministic creation of hBN SPEs either rely on substrate nanopatterning that is not compatible with integrated photonics or utilize radiation sources that might introduce unpredictable damage or contamination to hBN. Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with atomic force microscopy (AFM). The method applies to hBN flakes on flat silicon dioxide-silicon substrates that can be readily integrated into on-chip photonic devices. The achieved SPE yields are above 30% for multiple indent sizes, and a maximum yield of 36% is demonstrated for indents around 400 nm. Our results mark an important step toward the deterministic creation and integration of hBN SPEs with photonic and plasmonic devices.


Subject(s)
Boron Compounds , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...