Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33986193

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.


Subject(s)
Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , COVID-19/blood , COVID-19/complications , Neutrophils/immunology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Blood Coagulation Disorders/immunology , COVID-19/immunology , Cytokines/blood , Female , GPI-Linked Proteins/blood , Hospitalization , Humans , Inflammation Mediators/blood , Male , Middle Aged , Neutrophils/classification , Pandemics , Phagocytosis , Platelet Activation , Receptors, IgG/blood , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Severity of Illness Index
2.
G3 (Bethesda) ; 7(6): 1767-1773, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28391240

ABSTRACT

Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 (Mcs3)-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 (RNO1). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1-segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 (RNO1:143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10-7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3-orthologous regions with potential association to risk (10-7 < p < 10-3) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14-a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Genomics , Mammary Neoplasms, Animal/genetics , Quantitative Trait Loci , Animals , Animals, Congenic , Breeding , Cell Transformation, Neoplastic/genetics , Female , Genomics/methods , Humans , Phenotype , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...