Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(23): 233603, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644656

ABSTRACT

We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of ^{87}Rb atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the F_{y} and F_{z} components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage.

2.
Phys Rev Lett ; 119(4): 043603, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-29341778

ABSTRACT

We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×10^{6} cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBsqrt[V]≈3.96 fTsqrt[cm^{3}/Hz], comparable to the best rf magnetometers.

3.
Opt Lett ; 41(13): 2946-9, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367072

ABSTRACT

We demonstrate high-efficiency, shot-noise-limited differential photodetection with real-time signal conditioning, suitable for feedback-based quantum control of atomic systems. The detector system has quantum efficiency of 0.92, is shot-noise-limited from 7.4×105 to 3.7×108 photons per pulse, and provides real-time voltage-encoded output at up to 2.3 M pulses per second.

4.
Phys Rev Lett ; 113(9): 093601, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215981

ABSTRACT

We report the generation of a macroscopic singlet state in a cold atomic sample via quantum nondemolition measurement-induced spin squeezing. We observe 3 dB of spin squeezing and detect entanglement with 5σ statistical significance using a generalized spin-squeezing inequality. The degree of squeezing implies at least 50% of the atoms have formed singlets.

SELECTION OF CITATIONS
SEARCH DETAIL
...