Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 67(12): 2685-91, 2013.
Article in English | MEDLINE | ID: mdl-23787304

ABSTRACT

Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.


Subject(s)
Bioreactors , Electric Power Supplies , Membranes, Artificial , Waste Disposal, Fluid/instrumentation , Carbon/chemistry , Nitrogen/chemistry , Waste Disposal, Fluid/methods
2.
Water Sci Technol ; 66(10): 2056-64, 2012.
Article in English | MEDLINE | ID: mdl-22949234

ABSTRACT

This paper aims to demonstrate the relevance of membrane bioreactor (MBR) technology for the reduction of the environmental footprint of wastewater treatment in terms of removal of microbial and organic trace pollutants with increased reliability of operation. The application of a holistic approach using failure mode analysis, life cycle analysis (LCA), water quality fingerprints and environmental impacts underlines the lower environmental footprint of MBRs compared with conventional activated sludge. Several elements of this empirical approach can be included to upgrade the existing LCA tools in order to include the reduction of eco-toxicity, better human health protection and water reuse.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Ecosystem , Environment , Water Microbiology , Water Pollution/prevention & control , Water Purification/instrumentation , Water Purification/methods
3.
Water Sci Technol ; 65(7): 1179-89, 2012.
Article in English | MEDLINE | ID: mdl-22437014

ABSTRACT

The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range. During the present work more than 100 substances were analysed through on-site mass balances over 19 municipal wastewater treatment lines. The most relevant substances according to their occurrence in raw wastewater, in treated wastewater and in sludge were identified, and their fate in wastewater treatment processes was assessed. About half of priority substances of WFD were found at concentrations higher than 0.1 µg/L in wastewater. For 26 substances, potential non-compliance with Environmental Quality Standard of Water Framework Directive has been identified in treated wastewater, depending on river flow. Main concerns are for Cd, DEHP, diuron, alkylphenols, and chloroform. Emerging substances of particular concern are by-products, organic chemicals (e.g. triclosan, benzothiazole) and pharmaceuticals (e.g. ketoprofen, diclofenac, sulfamethoxazole, carbamazepine). About 80% of the load of micropollutants was removed by conventional activated sludge plants, but about two-thirds of removed substances were mainly transferred to sludge.


Subject(s)
Water Pollutants/analysis , Water Pollution/analysis , Water Purification/standards , Sewage/analysis , Water Purification/legislation & jurisprudence
4.
Water Sci Technol ; 63(1): 57-65, 2011.
Article in English | MEDLINE | ID: mdl-21245554

ABSTRACT

The next challenge of wastewater treatment is to reliably remove micro-pollutants at the microgram per litre range in order to meet the environmental quality standards set by new regulations like the Water Framework Directive. The present work assessed the efficiency of different types of primary, secondary and tertiary processes for the removal of more than 100 priority substances and other relevant emerging pollutants through on-site mass balances over 19 municipal wastewater treatment lines. Secondary biological processes proved to be in average 30% more efficient than primary settling processes. The activated sludge (AS) process led to a significant reduction of pollution loads (more than 50% removal for 70% of the substances detected). Biofilm processes led to equivalent removal efficiencies compared to AS, except for some pharmaceuticals. The membrane bioreactor (MBR) process allowed to upgrade removal efficiencies of some substances only partially degraded during conventional AS processes. Preliminary tertiary processes like tertiary settling and sand filtration could achieve significant removal for adsorbable substances. Advanced tertiary processes, like ozonation, activated carbon and reverse osmosis were all very efficient (close to 100%) to complete the removal of polar pesticides and pharmaceuticals; less polar substances being better retained by reverse osmosis.


Subject(s)
Environmental Restoration and Remediation/methods , Water Pollutants/isolation & purification , Biofilms , Bioreactors , Membranes, Artificial , Water Pollutants/analysis
5.
Water Sci Technol ; 62(12): 2970-8, 2010.
Article in English | MEDLINE | ID: mdl-21123929

ABSTRACT

The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range in order to reduce the discharge for priority substances and to meet the environmental quality standards set by the European Water Framework Directive. The present work assessed the occurrence of 60 organic substances (priority substances and other relevant pollutants) in municipal wastewater and sludge. Their fate in the treatment processes and their removal efficiencies were quantified. Thorough on-site mass balances were carried out at 8 municipal wastewater treatment plants chosen among conventional and advanced secondary processes. It was found that 70% of the substances were quantified in raw wastewater and 50% in effluent, with a transfer without a limited degradation for most of them. Low loaded activated sludge (AS) process reduced the emission of more than half of micropollutants. At low sludge retention time (AS under high load), lower removal efficiencies were measured compared to low loaded AS. No influence of temperature of the biological reactor was shown. The membrane bioreactor process increased the removal efficiencies for one third of the substances that were partially removed with AS. Still, five substances were measured at concentrations exceeding the environmental quality standards at the outlet of the studied plants. In addition to efforts for source-reduction, complementary treatments need to be set-up.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...