Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 273: 116154, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422789

ABSTRACT

Blooms of the red, filamentous cyanobacterium Planktothrix rubescens occur frequently in pre-alpine lakes in Europe, often with concomitant toxic microcystin (MC) production. Trophic transfer of MCs has been observed in bivalves, fish, and zooplankton species, while uptake of MCs into Diptera species could facilitate distribution of MCs into terrestrial food webs and habitats. In this study, we characterized a Planktothrix bloom in summer 2019 in Lake Mindelsee and tracked possible trophic transfer and/or bioaccumulation of MCs via analysis of phytoplankton, zooplankton (Daphnia) and emergent aquatic insects (Chaoborus, Chironomidae and Trichoptera). Using 16 S rRNA gene amplicon sequencing, we found that five sequence variants of Planktothrix spp. were responsible for bloom formation in September and October of 2019, and these MC-producing variants, provisionally identified as P. isothrix and/or P. serta, occurred exclusively in Lake Mindelsee (Germany), while other variants were also detected in nearby Lake Constance. The remaining cyanobacterial community was dominated by Cyanobiaceae species with high species overlap with Lake Constance, suggesting a well-established exchange of cyanobacteria species between the adjacent lakes. With targeted LC-HRMS/MS we identified two MC-congeners, MC-LR and [Asp3]MC-RR with maximum concentrations of 45 ng [Asp3]MC-RR/L in lake water in September. Both MC congeners displayed different predominance patterns, suggesting that two different MC-producing species occurred in a time-dependent manner, whereby [Asp3]MC-RR was clearly associated with the Planktothrix spp. bloom. We demonstrate an exclusive transfer of MC-LR, but not [Asp3]MC-RR, from phytoplankton into zooplankton reaching a 10-fold bioconcentration, yet complete absence of these MC congeners or their conjugates in aquatic insects. The latter demonstrated a limited trophic transfer of MCs from zooplankton to zooplanktivorous insect larvae (e.g., Chaoborus), or direct transfer into other aquatic insects (e.g. Chironomidae and Trichoptera), whether due to avoidance or limited uptake and/or rapid excretion of MCs by higher trophic emergent aquatic insects.


Subject(s)
Chironomidae , Cyanobacteria , Animals , Lakes/microbiology , Planktothrix , Food Chain , Microcystins/toxicity , Cyanobacteria/genetics , Phytoplankton , Germany
2.
Hydrobiologia ; 850(15): 3241-3256, 2023.
Article in English | MEDLINE | ID: mdl-37397168

ABSTRACT

Fishponds, despite being globally abundant, have mainly been considered as food production sites and have received little scientific attention in terms of their ecological contributions to the surrounding terrestrial environment. Emergent insects from fishponds may be important contributors of lipids and essential fatty acids to terrestrial ecosystems. In this field study, we investigated nine eutrophic fishponds in Austria from June to September 2020 to examine how Chlorophyll-a concentrations affect the biomass of emergent insect taxa (i.e., quantity of dietary subsidies; n = 108) and their total lipid and long-chain polyunsaturated fatty acid content (LC-PUFA, i.e., quality of dietary subsidies; n = 94). Chironomidae and Chaoboridae were the most abundant emergent insect taxa, followed by Trichoptera, Ephemeroptera, and Odonata. A total of 1068 kg of emergent insect dry mass were exported from these ponds (65.3 hectares). Chironomidae alone exported 103 kg of total lipids and 9.4 kg of omega-3 PUFA. Increasing Chl-a concentrations were associated with decreasing biomass export and a decrease in total lipid and LC-PUFA export via emergent Chironomidae. The PUFA composition of emergent insect taxa differed significantly from dietary algae, suggesting selective PUFA retention by insects. The export of insect biomass from these eutrophic carp ponds was higher than that previously reported from oligotrophic lakes. However, lower biomass and diversity are exported from the fishponds compared to managed ponds. Nonetheless, our data suggest that fishponds provide crucial ecosystem services to terrestrial consumers by contributing essential dietary nutrients to consumer diets via emergent insects. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-05040-2.

3.
Oecologia ; 202(1): 151-163, 2023 May.
Article in English | MEDLINE | ID: mdl-37204498

ABSTRACT

The dietary supply of polyunsaturated fatty acids (PUFA) crucially affects animals' performance at different temperatures. However, the underlying physiological mechanisms are still insufficiently understood. Here, we analyzed lifespan and heat tolerance of four genotypes of Daphnia magna reared on either the green alga Scenedesmus obliquus that lacks long-chain (> C18) PUFA, or the heterokont alga Nannochloropsis limnetica that contains C20 PUFA, both either at saturating and near-starvation levels. A significant genotype-by-diet interaction in lifespan was observed at saturating diets. The C20 PUFA-rich diet eliminated differences in lifespan among genotypes on the PUFA-deficient diet. Corrected for body length, acute heat tolerance was higher at low than at high food concentration, at least in the older of the two age groups analyzed. Genotypes differed significantly in heat tolerance, but there were no genotype-by-diet interactions. As predicted, the C20 PUFA-rich diet resulted in higher lipid peroxidation (LPO) and a lower mitochondrial membrane potential (ΔΨm). LPO levels averaged across clones and rearing conditions were inversely related to acute heat tolerance. Yet, heat tolerance was higher on the PUFA-rich diet than on the PUFA-deficient diet, particularly in older Daphnia, indicating that the C20 PUFA-rich diet allowed Daphnia to compensate for higher LPO. In contrast, Daphnia with intermediate levels of ΔΨm showed the lowest heat tolerance. Neither LPO nor ΔΨm explained the diet effects on lifespan. We hypothesize that antioxidants present in the PUFA-rich diet may have enabled higher heat tolerance of Daphnia despite higher LPO, which may also explain the lifespan expansion of otherwise short-lived genotypes.


Subject(s)
Thermotolerance , Animals , Daphnia/physiology , Longevity , Lipid Peroxidation , Membrane Potential, Mitochondrial , Diet
4.
Biomolecules ; 13(5)2023 05 03.
Article in English | MEDLINE | ID: mdl-37238661

ABSTRACT

The long-chain polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA, ω-3, or n-3) and arachidonic acid (ARA, ω-6 or n-6) are known to have distinct physiological functions, yet can both support growth and reproduction of consumers, raising the question of whether EPA and ARA are ecologically substitutable dietary resources. We explored the relative importance of EPA and ARA for the growth and reproduction of the freshwater keystone herbivore Daphnia in a life-history experiment. Both PUFA were supplemented in a concentration-dependent manner to a PUFA-free diet, separately and in combination (50% EPA: 50% ARA mixture). The growth-response curves obtained with EPA, ARA, and the mixture were virtually congruent and the thresholds for PUFA limitation did not differ, indicating that EPA (n-3) and ARA (n-6) were substitutable dietary resources under the applied experimental conditions. The actual requirements for EPA and ARA might change with growth conditions, e.g., under the influence of parasites or pathogens. The higher retention of ARA in Daphnia suggests that EPA and ARA are subject to different turnover rates, which also implies different physiological functions. Studies on the ARA requirements of Daphnia could provide valuable information on the presumably underestimated ecological importance of ARA in freshwater food webs.


Subject(s)
Fatty Acids, Omega-3 , Arachidonic Acid , Fatty Acids, Unsaturated , Eicosapentaenoic Acid , Dietary Supplements
5.
Ecol Evol ; 13(3): e9927, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36969929

ABSTRACT

Aquatic and their adjacent terrestrial ecosystems are linked via the flux of organic and inorganic matter. Emergent aquatic insects are recognized as high-quality food for terrestrial predators, because they provide more physiologically relevant long-chain polyunsaturated fatty acids (PUFA) than terrestrial insects. The effects of dietary PUFA on terrestrial predators have been explored mainly in feeding trials conducted under controlled laboratory conditions, hampering the assessment of the ecological relevance of dietary PUFA deficiencies under field conditions. We assessed the PUFA transfer across the aquatic-terrestrial interface and the consequences for terrestrial riparian predators in two outdoor microcosm experiments. We established simplified tritrophic food chains, consisting of one of four basic food sources, an intermediary collector gatherer (Chironomus riparius, Chironomidae), and a riparian web-building spider (Tetragnatha sp.). The four basic food sources (algae, conditioned leaves, oatmeal, and fish food) differed in PUFA profiles and were used to track the trophic transfer of single PUFA along the food chain and to assess their potential effects on spiders, that is, on fresh weight, body condition (size-controlled measurement of nutritional status), and immune response. The PUFA profiles of the basic food sources, C. riparius and spiders differed between treatments, except for spiders in the second experiment. The PUFA α-linolenic acid (ALA, 18:3n-3) and É£-linolenic acid (GLA, 18:3n-6) were major contributors to the differences between treatments. PUFA profiles of the basic food sources influenced the fresh weight and body condition of spiders in the first experiment, but not in the second experiment, and did not affect the immune response, growth rate, and dry weight in both experiments. Furthermore, our results indicate that the examined responses are dependent on temperature. Future studies including anthropogenic stressors would deepen our understanding of the transfer and role of PUFA in ecosystems.

6.
Sci Total Environ ; 855: 158658, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36113799

ABSTRACT

Freshwater systems have undergone drastic alterations during the last century, potentially affecting cross-boundary resource transfers between aquatic and terrestrial ecosystems. One important connection is the export of biomass by emergent aquatic insects containing omega-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), that is scarce in terrestrial systems. Because of taxon-specific differences in PUFA content and functional traits, the contribution of different insect groups should be considered, in addition to total biomass export. In this context, one important trait is the emergence mode. Stoneflies, in contrast to other aquatic insects, crawl to land to emerge instead of flying directly from the water surface, making them accessible to ground-dwelling predators. Because stoneflies are especially susceptible to environmental change, stream degradation might cause a mismatch of available and required nutrients, particularly for ground-dwelling predators. In this study, we estimated emergent biomass and EPA export along two streams with different levels of habitat degradation. The EPA content in aquatic insects did not differ with different degrees of habitat degradation and total biomass export in spring was with 7.9 ± 9.6 mg m-2 day-1 in the degraded and 7.3 ± 8.5 mg m-2 day-1 in the natural system, also unaffected. However, habitat degradation substantially altered the contribution of crawling emergence to the total export in spring, with no biomass export by stoneflies at the most degraded sites. The EPA content in ground-dwelling spiders was correlated with emergent stonefly biomass, making up only 16.0 ± 6.2 % of total fatty acids at sites with no stonefly emergence, but 27.3 ± 3.0 % at sites with highest stonefly emergence. Because immune function in ground-dwelling spiders has been connected to EPA levels, reduced crawling emergence might impact spider fitness. Functional traits, like emergence mode as well as nutritional quality, should be considered when assessing the effects of stream degradation on adjacent terrestrial ecosystems.


Subject(s)
Spiders , Animals , Ecosystem , Insecta , Biomass , Seasons , Food Chain
7.
Biology (Basel) ; 11(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36552325

ABSTRACT

Stable isotope values can express resource usage by organisms, but their precise interpretation is predicated using a controlled experiment-based validation process. Here, we develop a stable isotope tracking approach towards exploring resource shifts in a key primary consumer species Daphnia magna. We used a diet switch experiment and model fitting to quantify the stable carbon (δ13C) and nitrogen (δ15N) isotope turnover rates and discrimination factors for eight dietary sources of the plankton species that differ in their cellular organization (unicellular or filamentous), pigment and nutrient compositions (sterols and polyunsaturated fatty acids), and secondary metabolite production rates. We also conduct a starvation experiment. We evaluate nine tissue turnover models using Akaike's information criterion and estimate the repetitive trophic discrimination factors. Using the parameter estimates, we calculate the hourly stable isotope turnover rates. We report an exceedingly faster turnover value following dietary switching (72 to 96 h) and a measurable variation in trophic discrimination factors. The results show that toxic stress and the dietary quantity and quality induce trophic isotope variation in Daphnia individuals. This study provides insight into the physiological processes that underpin stable isotope patterns. We explicitly test multiple alternative dietary sources and fasting and discuss the parameters that are fundamental for field- and laboratory-based stable isotope studies.

8.
Proc Biol Sci ; 289(1974): 20220178, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35538780

ABSTRACT

The human-caused proliferation of cyanobacteria severely impacts consumers in freshwater ecosystems. Toxicity is often singled out as the sole trait to which consumers can adapt, even though cyanobacteria are not necessarily toxic and the lack of nutritionally critical sterols in cyanobacteria is known to impair consumers. We studied the relative significance of toxicity and dietary sterol deficiency in driving the evolution of grazer resistance to cyanobacteria in a large lake with a well-documented history of eutrophication and oligotrophication. Resurrecting decades-old Daphnia genotypes from the sediment allowed us to show that the evolution and subsequent loss of grazer resistance to cyanobacteria involved an adaptation to changes in both toxicity and dietary sterol availability. The adaptation of Daphnia to changes in cyanobacteria abundance revealed a sterol-mediated gleaner-opportunist trade-off. Genotypes from peak-eutrophic periods showed a higher affinity for dietary sterols at the cost of a lower maximum growth rate, whereas genotypes from more oligotrophic periods showed a lower affinity for dietary sterols in favour of a higher maximum growth rate. Our data corroborate the significance of sterols as limiting nutrients in aquatic food webs and highlight the applicability of the gleaner-opportunist trade-off for reconstructing eco-evolutionary processes.


Subject(s)
Cyanobacteria , Sterols , Animals , Cyanobacteria/genetics , Daphnia/genetics , Ecosystem , Eutrophication , Lakes
9.
Curr Biol ; 32(6): 1342-1349.e3, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35172126

ABSTRACT

Climate change can decouple resource supply from consumer demand, with the potential to create phenological mismatches driving negative consequences on fitness. However, the underlying ecological mechanisms of phenological mismatches between consumers and their resources have not been fully explored. Here, we use long-term records of aquatic and terrestrial insect biomass and egg-hatching times of several co-occurring insectivorous species to investigate temporal mismatches between the availability of and demand for nutrients that are essential for offspring development. We found that insects with aquatic larvae reach peak biomass earlier in the season than those with terrestrial larvae and that the relative availability of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) to consumers is almost entirely dependent on the phenology of aquatic insect emergence. This is due to the 4- to 34-fold greater n-3 LCPUFA concentration difference in insects emerging from aquatic as opposed to terrestrial habitats. From a long-sampled site (25 years) undergoing minimal land use conversion, we found that both aquatic and terrestrial insect phenologies have advanced substantially faster than those of insectivorous birds, shifting the timing of peak availability of n-3 LCPUFAs for birds during reproduction. For species that require n-3 LCPUFAs directly from diet, highly nutritious aquatic insects cannot simply be replaced by terrestrial insects, creating nutritional phenological mismatches. Our research findings reveal and highlight the increasing necessity of specifically investigating how nutritional phenology, rather than only overall resource availability, is changing for consumers in response to climate change.


Subject(s)
Climate Change , Insecta , Animals , Diet , Ecosystem , Seasons
10.
Toxins (Basel) ; 13(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946510

ABSTRACT

Cyanobacterial blooms are an omnipresent and well-known result of eutrophication and climate change in aquatic systems. Cyanobacteria produce a plethora of toxic secondary metabolites that affect humans, animals and ecosystems. Many cyanotoxins primarily affect the grazers of phytoplankton, e.g., Daphnia. The neurotoxin anatoxin-α has been reported world-wide; despite its potency, anatoxin-α and its effects on Daphnia have not been thoroughly investigated. Here, we investigated the effects of the anatoxin-α-producing Tychonema on life-history parameters and gene expression of nicotine-acetylcholine receptors (NAR), the direct targets of anatoxin-α, using several D. magna clones. We used juvenile somatic growth rates as a measure of fitness and analyzed gene expression by qPCR. Exposure to 100% Tychonema reduced the clones' growth rates and caused an up-regulation of NAR gene expression. When 50% of the food consisted of Tychonema, none of the clones were reduced in growth and only one of them showed an increase in NAR gene expression. We demonstrate that this increased NAR gene expression can be maternally transferred and that offspring from experienced mothers show a higher growth rate when treated with 50% Tychonema compared with control offspring. However, the addition of further (anthropogenic) stressors might impair Daphnia's adaptive responses to anatoxin-α. Especially the presence of certain pollutants (i.e., neonicotinoids), which also target NARs, might reduce Daphnia's capability to cope with anatoxin-α.


Subject(s)
Daphnia/metabolism , Tropanes/pharmacology , Animals , Cloning, Molecular , Cyanobacteria/metabolism , Cyanobacteria Toxins , Daphnia/drug effects , Daphnia/genetics , Gene Expression/drug effects
11.
Nat Commun ; 12(1): 1945, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782425

ABSTRACT

Exploring the capability of organisms to cope with human-caused environmental change is crucial for assessing the risk of extinction and biodiversity loss. We study the consequences of changing nutrient pollution for the freshwater keystone grazer, Daphnia, in a large lake with a well-documented history of eutrophication and oligotrophication. Experiments using decades-old genotypes resurrected from the sediment egg bank revealed that nutrient enrichment in the middle of the 20th century, resulting in the proliferation of harmful cyanobacteria, led to the rapid evolution of grazer resistance to cyanobacteria. We show here that the subsequent reduction in nutrient input, accompanied by a decrease in cyanobacteria, resulted in the re-emergence of highly susceptible Daphnia genotypes. Expression and subsequent loss of grazer resistance occurred at high evolutionary rates, suggesting opposing selection and that maintaining resistance was costly. We provide a rare example of reversed evolution of a fitness-relevant trait in response to relaxed selection.


Subject(s)
Biological Coevolution , Cyanobacteria/pathogenicity , Daphnia/genetics , Genetic Fitness , Water Pollution/analysis , Animals , Cyanobacteria/physiology , Daphnia/growth & development , Daphnia/metabolism , Europe , Eutrophication , Genotype , Humans , Lakes/chemistry , Phenotype , Quantitative Trait, Heritable , Selection, Genetic
12.
Sci Total Environ ; 769: 144657, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33493914

ABSTRACT

Salinization of freshwater ecosystems is a growing hazard for organisms and ecosystem functioning worldwide. In northern latitudes, road salt that is being transported into water bodies can cause year-round increases in lake salinity levels. Exploring the environmental factors driving the susceptibility of freshwater zooplankton to road salt is crucial for assessing the impact of salinization on food web processes. We studied the role of essential lipids, i.e., sterols and long-chain polyunsaturated fatty acids (PUFAs), in mediating salt tolerance of the freshwater keystone herbivore Daphnia. Sterols and PUFAs are involved in regulating ion permeability of biological membranes and thus we hypothesized that the susceptibility to salt is affected by the dietary sterol and PUFA supply. Life history experiments revealed opposing effects of sterol and PUFA supplementation on salt tolerance, i.e., tolerance increased upon sterol supplementation but decreased upon PUFA supplementation, which is consistent with their proposed impact on membrane permeability. Our results suggest that the susceptibility of freshwater zooplankton to salinization strongly depends on the dietary lipid supply and thus the phytoplankton community composition. Hence, trophic state related differences in the phytoplankton community composition need to be considered when assessing the consequences of salinization for freshwater ecosystem functioning.


Subject(s)
Ecosystem , Herbivory , Animals , Daphnia , Salt Tolerance , Zooplankton
13.
Front Microbiol ; 11: 586120, 2020.
Article in English | MEDLINE | ID: mdl-33193235

ABSTRACT

The harmful bloom-forming cyanobacterium Planktothrix is commonly considered to be nutritionally inadequate for zooplankton grazers, resulting in limited top-down control. However, interactions between Planktothrix and zooplankton grazers are poorly understood. The food quality of Planktothrix is potentially constrained by morphological properties (i.e., filament formation), the production of harmful secondary metabolites, and a deficiency in essential lipids (i.e., primarily sterols). Here, we investigated the relative significance of toxin production (microcystins, carboxypeptidase A inhibitors, protease inhibitors) and sterol limitation for the performance of Daphnia feeding on one Planktothrix rubescens and one P. agardhii wild-type/microcystin knock-out mutant pair. Our data suggest that the poor food quality of both Planktothrix spp. is due to deleterious effects mediated by various harmful secondary metabolites and that the impact of sterol limitation is partially or completely superimposed by toxicity. The significance of the different factors seems to depend on the metabolite profile of the considered Planktothrix strain and the Daphnia clone that is used for the experiments. The toxin-responsive gene expression (transporter genes, gpx, and trypsin) and enzyme activity patterns revealed strain-specific food quality constraints and that Daphnia is capable of modulating its physiological responses according to the ingested Planktothrix strain. Future studies need to consider that Planktothrix-grazer interactions are simultaneously modulated by multiple factors to improve our understanding of top-down influences on Planktothrix bloom formation.

14.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190644, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32536305

ABSTRACT

Biochemical food quality constraints affect the performance of consumers and mediate trait variation among and within consumer species. To assess inter- and intraspecific differences in fatty acid retention and conversion in freshwater rotifers, we provided four strains of two closely related rotifer species, Brachionus calyciflorus sensu stricto and Brachionus fernandoi, with food algae differing in their fatty acid composition. The rotifers grazed for 5 days on either Nannochloropsis limnetica or Monoraphidium minutum, two food algae with distinct polyunsaturated fatty acid (PUFA) profiles, before the diets were switched to PUFA-free Synechococcus elongatus, which was provided for three more days. We found between- and within-species differences in rotifer fatty acid compositions on the respective food sources and, in particular, highly specific acclimation reactions to the PUFA-free diet. The different reactions indicate inter- but also intraspecific differences in physiological traits, such as PUFA retention, allocation and bioconversion capacities, within the genus Brachionus that are most likely accompanied by differences in their nutritional demands. Our data suggest that biochemical food quality constraints act differently on traits of closely related species and of strains of a particular species and thus might be involved in shaping ecological interactions and evolutionary processes. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Subject(s)
Acclimatization , Animal Feed/analysis , Fatty Acids/metabolism , Rotifera/metabolism , Animals , Chlorophyta/chemistry , Diet/veterinary , Food Quality , Species Specificity , Stramenopiles/chemistry , Synechococcus/chemistry
15.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190641, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32536315

ABSTRACT

To understand consumer dietary requirements and resource use across ecosystems, researchers have employed a variety of methods, including bulk stable isotope and fatty acid composition analyses. Compound-specific stable isotope analysis (CSIA) of fatty acids combines both of these tools into an even more powerful method with the capacity to broaden our understanding of food web ecology and nutritional dynamics. Here, we provide an overview of the potential that CSIA studies hold and their constraints. We first review the use of fatty acid CSIA in ecology at the natural abundance level as well as enriched physiological tracers, and highlight the unique insights that CSIA of fatty acids can provide. Next, we evaluate methodological best practices when generating and interpreting CSIA data. We then introduce three cutting-edge methods: hydrogen CSIA of fatty acids, and fatty acid isotopomer and isotopologue analyses, which are not yet widely used in ecological studies, but hold the potential to address some of the limitations of current techniques. Finally, we address future priorities in the field of CSIA including: generating more data across a wider range of taxa; lowering costs and increasing laboratory availability; working across disciplinary and methodological boundaries; and combining approaches to answer macroevolutionary questions. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Subject(s)
Carbon Isotopes/analysis , Deuterium/analysis , Ecology/methods , Fatty Acids/analysis , Food Chain , Nitrogen Isotopes/analysis
16.
Ecol Evol ; 9(22): 12813-12825, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788216

ABSTRACT

During past decades, many lakes underwent drastic human-caused changes in trophic state with strong implications for population dynamics and food web processes. We investigated the influence of trophic state on nutrient allocation into Daphnia resting eggs. The production of resting eggs is an important survival strategy, allowing Daphnia to cope with unfavorable environmental conditions. Allocation of essential nutrients into resting eggs may crucially influence embryonic development and offspring survival and thus is of great ecological and evolutionary interest. The capacity of Daphnia to adjust the allocation of nutrients into resting eggs may depend on the dietary nutrient supply, which may vary with trophic state-related changes in the phytoplankton community composition. Resting eggs were isolated from sediment cores taken from Lake Constance, a large prealpine lake with a distinct eutrophication and reoligotrophication history, and analyzed for elemental (carbon, nitrogen, and phosphorus) and biochemical (sterols and fatty acids) nutrients. Carbon allocation into Daphnia resting eggs continuously decreased over time, irrespective of changes in trophic state. The allocation of nitrogen into Daphnia resting eggs followed the changes in trophic state, that is, nitrogen concentrations in resting eggs increased with eutrophication and decreased again with reoligotrophication. The allocation of phosphorus, sterols and long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid, into Daphnia resting eggs did not change significantly over time. Changes in trophic state strikingly influenced all trophic levels in Lake Constance. However, nutrient allocation into Daphnia resting eggs was mostly resilient to changes in lake trophic state.

17.
Sci Rep ; 9(1): 16126, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31695099

ABSTRACT

In natural heterogeneous environments, the fitness of animals is strongly influenced by the availability and composition of food. Food quantity and biochemical quality constraints may affect individual traits of consumers differently, mediating fitness response variation within and among species. Using a multifactorial experimental approach, we assessed population growth rate, fecundity, and survival of six strains of the two closely related freshwater rotifer species Brachionus calyciflorus sensu stricto and Brachionus fernandoi. Therefore, rotifers fed low and high concentrations of three algal species differing in their biochemical food quality. Additionally, we explored the potential of a single limiting biochemical nutrient to mediate variations in population growth response. Therefore, rotifers fed a sterol-free alga, which we supplemented with cholesterol-containing liposomes. Co-limitation by food quantity and biochemical food quality resulted in differences in population growth rates among strains, but not between species, although effects on fecundity and survival differed between species. The effect of cholesterol supplementation on population growth was strain-specific but not species-specific. We show that fitness response variations within and among species can be mediated by biochemical food quality. Dietary constraints thus may act as evolutionary drivers on physiological traits of consumers, which may have strong implications for various ecological interactions.


Subject(s)
Animal Feed/analysis , Rotifera/physiology , Animals , Feeding Behavior , Female , Fertility , Food Quality , Male , Rotifera/growth & development , Sterols/metabolism
18.
Article in English | MEDLINE | ID: mdl-30904725

ABSTRACT

Optimizing physiological functions at different temperatures includes shifts in the lipid composition of ectothermic animals. These shifts may be associated with changes in lipid peroxidation in response to oxidative stress, because lipids differ in their susceptibility to oxidative damage. Polyunsaturated fatty acids (PUFA) are particular prone to peroxidation. Here, we analyzed changes in the fatty acid composition, cholesterol content and the level of oxidative damage as thiobarbituric reactive substances (TBARS) in Daphnia magna as a function of acclimation temperature. The total fatty acid content was highest in cold-acclimated animals. The relative share of most PUFA decreased with increasing acclimation temperature. In contrast, the contribution of saturated and monounsaturated fatty acids (SFA and MUFA) increased with acclimation temperature, although the latter to a lower extent. Cholesterol content remained unchanged. The level of oxidative damage was lowest in animals reared at warm temperatures, most likely reflecting their lowest content of PUFA. Heat exposure (1 h at 33 °C) caused the highest increase in lipid peroxidation in cold-acclimated animals, containing more PUFA. Our data suggest that cold-induced adjustments in the body lipid composition increase the vulnerability of zooplankton to heat-induced oxidative stress. In particular, animals performing diel vertical migration may be highly susceptible to temperature-induced lipid damage.


Subject(s)
Acclimatization , Daphnia/metabolism , Fatty Acids, Unsaturated/biosynthesis , Hot Temperature , Lipid Peroxidation , Oxidative Stress , Animals
19.
Environ Microbiol ; 21(3): 949-958, 2019 03.
Article in English | MEDLINE | ID: mdl-30507060

ABSTRACT

Chytrids are ubiquitous fungal parasites in aquatic ecosystems, infecting representatives of all major phytoplankton groups. They repack carbon from inedible phytoplankton hosts into easily ingested chytrid propagules (zoospores), rendering this carbon accessible to zooplankton. Grazing on zoospores may circumvent bottlenecks in carbon transfer imposed by the dominance of inedible or poorly nutritious phytoplankton (mycoloop). We explored qualitative aspects of the mycoloop by analysing lipid profiles (fatty acids, sterols) of two chytrids infecting two major bloom-forming phytoplankton taxa of contrasting nutritional value: the diatom Asterionella formosa and the filamentous cyanobacterium Planktothrix agardhii. The polyunsaturated fatty acid composition of chytrids largely reflected that of their hosts, highlighting their role as conveyors of otherwise inaccessible essential lipids to higher trophic levels. We also showed that chytrids are capable of synthesizing sterols, thus providing a source of these essential nutrients for grazers even when sterols are absent in their phytoplankton hosts. Our findings reveal novel qualitative facets of the mycoloop, showing that parasitic chytrids, in addition to making carbon and essential lipids available from inedible sources, also upgrade their host's biochemical composition by producing sterols de novo, thereby enhancing carbon and energy fluxes in aquatic food webs.


Subject(s)
Cyanobacteria/metabolism , Diatoms/microbiology , Fatty Acids/analysis , Phytoplankton/microbiology , Sterols/analysis , Animals , Ecosystem , Food Chain
20.
Sci Rep ; 8(1): 630, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330538

ABSTRACT

Biogenic volatile organic compounds (BVOCs) affect atmospheric chemistry, climate and regional air quality in terrestrial and marine atmospheres. Although isoprene is a major BVOC produced in vascular plants, and marine phototrophs release dimethyl sulfide (DMS), lakes have been widely ignored for their production. Here we demonstrate that oligotrophic Lake Constance, a model for north temperate deep lakes, emits both volatiles to the atmosphere. Depth profiles indicated that highest concentrations of isoprene and DMS were associated with the chlorophyll maximum, suggesting that their production is closely linked to phototrophic processes. Significant correlations of the concentration patterns with taxon-specific fluorescence data, and measurements from algal cultures confirmed the phototrophic production of isoprene and DMS. Diurnal fluctuations in lake isoprene suggested an unrecognised physiological role in environmental acclimation similar to the antioxidant function of isoprene that has been suggested for marine biota. Flux estimations demonstrated that lakes are a currently undocumented source of DMS and isoprene to the atmosphere. Lakes may be of increasing importance for their contribution of isoprene and DMS to the atmosphere in the arctic zone where lake area coverage is high but terrestrial sources of BVOCs are small.

SELECTION OF CITATIONS
SEARCH DETAIL
...