Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 16(736): eabq4581, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416842

ABSTRACT

Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.


Subject(s)
Heart Failure , Transcription Factors , Animals , Humans , Mice , Disease Models, Animal , Endothelial Cells , Fibrosis , Intercellular Signaling Peptides and Proteins , Liver Cirrhosis/complications , SOX9 Transcription Factor/genetics
2.
Nat Commun ; 13(1): 149, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013221

ABSTRACT

Cachexia is associated with poor prognosis in chronic heart failure patients, but the underlying mechanisms of cachexia triggered disease progression remain poorly understood. Here, we investigate whether the dysregulation of myokine expression from wasting skeletal muscle exaggerates heart failure. RNA sequencing from wasting skeletal muscles of mice with heart failure reveals a reduced expression of Ostn, which encodes the secreted myokine Musclin, previously implicated in the enhancement of natriuretic peptide signaling. By generating skeletal muscle specific Ostn knock-out and overexpressing mice, we demonstrate that reduced skeletal muscle Musclin levels exaggerate, while its overexpression in muscle attenuates cardiac dysfunction and myocardial fibrosis during pressure overload. Mechanistically, Musclin enhances the abundance of C-type natriuretic peptide (CNP), thereby promoting cardiomyocyte contractility through protein kinase A and inhibiting fibroblast activation through protein kinase G signaling. Because we also find reduced OSTN expression in skeletal muscle of heart failure patients, augmentation of Musclin might serve as therapeutic strategy.


Subject(s)
Cachexia/genetics , Endomyocardial Fibrosis/genetics , Heart Failure/genetics , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Transcription Factors/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Aged , Aged, 80 and over , Animals , Cachexia/metabolism , Cachexia/physiopathology , Cachexia/prevention & control , Case-Control Studies , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Endomyocardial Fibrosis/metabolism , Endomyocardial Fibrosis/physiopathology , Endomyocardial Fibrosis/prevention & control , Female , Gene Expression Regulation , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/prevention & control , Heart Function Tests , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/agonists , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/deficiency , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , Muscular Atrophy/prevention & control , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Transcription Factors/agonists , Transcription Factors/antagonists & inhibitors , Transcription Factors/deficiency
3.
J Biol Chem ; 293(22): 8588-8599, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29669813

ABSTRACT

The acceleration of myocardial relaxation produced by ß-adrenoreceptor stimulation is mediated in part by protein kinase A (PKA)-mediated phosphorylation of cardiac troponin-I (cTnI), which decreases myofibrillar Ca2+ sensitivity. Previous evidence suggests that phosphorylation of both Ser-23 and Ser-24 in cTnI is required for this Ca2+ desensitization. PKA-mediated phosphorylation also partially protects cTnI from proteolysis by calpain. Here we report that protein kinase D (PKD) phosphorylates only one serine of cTnI Ser-23/24. To explore the functional consequences of this monophosphorylation, we examined the Ca2+ sensitivity of force production and susceptibility of cTnI to calpain-mediated proteolysis when Ser-23/24 of cTnI in mouse cardiac myofibrils was nonphosphorylated, mono-phosphorylated, or bisphosphorylated (using sequential incubations in λ-phosphatase, PKD, and PKA, respectively). Phos-tag gels, Western blotting, and high-resolution MS revealed that PKD produced >90% monophosphorylation of cTnI, primarily at Ser-24, whereas PKA led to cTnI bisphosphorylation exclusively. PKD markedly decreased the Ca2+ sensitivity of force production in detergent-permeabilized ventricular trabeculae, whereas subsequent incubation with PKA produced only a small further fall of Ca2+ sensitivity. Unlike PKD, PKA also substantially phosphorylated myosin-binding protein-C and significantly accelerated cross-bridge kinetics (ktr). After phosphorylation by PKD or PKA, cTnI in isolated myofibrils was partially protected from calpain-mediated degradation. We conclude that cTnI monophosphorylation at Ser-23/24 decreases myofibrillar Ca2+ sensitivity and partially protects cTnI from calpain-induced proteolysis. In healthy cardiomyocytes, the basal monophosphorylation of cTnI may help tonically regulate myofibrillar Ca2+ sensitivity.


Subject(s)
Calcium/metabolism , Calpain/pharmacology , Myocytes, Cardiac/physiology , Myofibrils/physiology , Proteolysis/drug effects , Serine/metabolism , Troponin I/metabolism , Animals , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myofibrils/drug effects , Phosphorylation , Protein Kinase C/metabolism , Rats , Serine/chemistry
4.
J Am Coll Cardiol ; 69(14): 1774-1791, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28385306

ABSTRACT

BACKGROUND: Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([18F]FDG PET), [18F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. OBJECTIVES: This study tested the efficacy of gallium-68-labeled DOTATATE (68Ga-DOTATATE), a somatostatin receptor subtype-2 (SST2)-binding PET tracer, for imaging atherosclerotic inflammation. METHODS: We confirmed 68Ga-DOTATATE binding in macrophages and excised carotid plaques. 68Ga-DOTATATE PET imaging was compared to [18F]FDG PET imaging in 42 patients with atherosclerosis. RESULTS: Target SSTR2 gene expression occurred exclusively in "proinflammatory" M1 macrophages, specific 68Ga-DOTATATE ligand binding to SST2 receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and carotid SSTR2 mRNA was highly correlated with in vivo 68Ga-DOTATATE PET signals (r = 0.89; 95% confidence interval [CI]: 0.28 to 0.99; p = 0.02). 68Ga-DOTATATE mean of maximum tissue-to-blood ratios (mTBRmax) correctly identified culprit versus nonculprit arteries in patients with acute coronary syndrome (median difference: 0.69; interquartile range [IQR]: 0.22 to 1.15; p = 0.008) and transient ischemic attack/stroke (median difference: 0.13; IQR: 0.07 to 0.32; p = 0.003). 68Ga-DOTATATE mTBRmax predicted high-risk coronary computed tomography features (receiver operating characteristics area under the curve [ROC AUC]: 0.86; 95% CI: 0.80 to 0.92; p < 0.0001), and correlated with Framingham risk score (r = 0.53; 95% CI: 0.32 to 0.69; p <0.0001) and [18F]FDG uptake (r = 0.73; 95% CI: 0.64 to 0.81; p < 0.0001). [18F]FDG mTBRmax differentiated culprit from nonculprit carotid lesions (median difference: 0.12; IQR: 0.0 to 0.23; p = 0.008) and high-risk from lower-risk coronary arteries (ROC AUC: 0.76; 95% CI: 0.62 to 0.91; p = 0.002); however, myocardial [18F]FDG spillover rendered coronary [18F]FDG scans uninterpretable in 27 patients (64%). Coronary 68Ga-DOTATATE PET scans were readable in all patients. CONCLUSIONS: We validated 68Ga-DOTATATE PET as a novel marker of atherosclerotic inflammation and confirmed that 68Ga-DOTATATE offers superior coronary imaging, excellent macrophage specificity, and better power to discriminate high-risk versus low-risk coronary lesions than [18F]FDG. (Vascular Inflammation Imaging Using Somatostatin Receptor Positron Emission Tomography [VISION]; NCT02021188).


Subject(s)
Atherosclerosis/diagnostic imaging , Fluorodeoxyglucose F18 , Inflammation/diagnostic imaging , Organometallic Compounds , Positron Emission Tomography Computed Tomography , Aged , Carotid Arteries/diagnostic imaging , Coronary Vessels/diagnostic imaging , Female , Humans , Macrophages/metabolism , Male , Middle Aged , Receptors, Somatostatin/analysis , Receptors, Somatostatin/metabolism
5.
PLoS One ; 11(4): e0153199, 2016.
Article in English | MEDLINE | ID: mdl-27088725

ABSTRACT

Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-ß (TGF-ß) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-ß -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression.


Subject(s)
Cell Differentiation/physiology , Cytoskeletal Proteins/metabolism , Muscle, Smooth, Vascular/cytology , Phosphoproteins/metabolism , Trans-Activators/metabolism , Actins/metabolism , Calcium-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Cytoskeletal Proteins/genetics , Gene Expression Regulation , Genetic Markers , Humans , Microfilament Proteins/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , NADPH Oxidase 4 , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Oxidation-Reduction , Phosphoproteins/genetics , Phosphorylation , Trans-Activators/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , rho-Associated Kinases/metabolism , Calponins
6.
Arterioscler Thromb Vasc Biol ; 35(5): 1198-206, 2015 May.
Article in English | MEDLINE | ID: mdl-25814672

ABSTRACT

OBJECTIVE: Focal adhesions (FAs) link the cytoskeleton to the extracellular matrix and as such play important roles in growth, migration, and contractile properties of vascular smooth muscle cells. Recently, it has been shown that downregulation of Nox4, a transforming growth factor (TGF) ß-inducible, hydrogen peroxide (H2O2)-producing enzyme, affects the number of FAs. However, the effectors downstream of Nox4 that mediate FA regulation are unknown. The FA resident protein H2O2-inducible clone (Hic)-5 is H2O2 and TGFß inducible, and a binding partner of the heat shock protein (Hsp) 27. The objective of this study was to elucidate the mechanism, by which Hic-5 and Hsp27 participate in TGFß-induced, Nox4-mediated vascular smooth muscle cell adhesion and migration. APPROACH AND RESULTS: Through a combination of molecular biology and biochemistry techniques, we found that TGFß, by a Nox4-dependent mechanism, induces the expression and interaction of Hic-5 and Hsp27, which is essential for Hic-5 localization to FAs. Importantly, we found that Hic-5 expression is required for the TGFß-mediated increase in FA number, adhesive forces and migration. Mechanistically, Nox4 downregulation impedes Smad (small body size and mothers against decapentaplegic) signaling by TGFß, and Hsp27 and Hic-5 upregulation by TGFß is blocked in small body size and mothers against decapentaplegic 4-deficient cells. CONCLUSIONS: Hic-5 and Hsp27 are effectors of Nox4 required for TGFß-stimulated FA formation, adhesion strength and migration in vascular smooth muscle cell.


Subject(s)
HSP27 Heat-Shock Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , NADPH Oxidases/metabolism , Transforming Growth Factor beta/metabolism , Cell Adhesion/genetics , Cell Adhesion/physiology , Cell Movement/genetics , Cell Movement/physiology , Cells, Cultured , Focal Adhesions/genetics , Focal Adhesions/physiology , HSP27 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle, Smooth, Vascular/cytology , NADPH Oxidase 4 , NADPH Oxidases/genetics , Sensitivity and Specificity , Signal Transduction
7.
PLoS One ; 8(11): e79657, 2013.
Article in English | MEDLINE | ID: mdl-24236150

ABSTRACT

In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor ß (TGFß) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFß and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFß completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFß. TGFß had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFß on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFß. siRNA against Smad4 completely reversed the inhibitory effect of TGFß on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFß-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFß via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.


Subject(s)
Cyclin D1/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Smad Proteins/metabolism , Transforming Growth Factor beta/pharmacology , Adolescent , Cell Proliferation/drug effects , Cyclin D1/genetics , Gene Expression Regulation/drug effects , Humans , Kruppel-Like Transcription Factors/metabolism , Male , Proteolysis , Signal Transduction/drug effects , Smad4 Protein/metabolism , Transcription, Genetic
8.
Arterioscler Thromb Vasc Biol ; 31(3): 567-73, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21164076

ABSTRACT

OBJECTIVE: Hydrogen peroxide (H(2)O(2)) is an important mediator in the vasculature, but its role in the regulation of soluble guanylate cyclase (sGC) activity and expression is not completely understood. The aim of this study was to test the effect of H(2)O(2) on sGC expression and function and to explore the molecular mechanism involved. METHODS AND RESULTS: H(2)O(2) increased sGCß1 protein steady-state levels in rat aorta and aortic smooth muscle cells (RASMCs) in a time- and dose-dependent manner, and this effect was blocked by catalase. sGCα2 expression increased along with ß1 subunit, whereas α1 subunit remained unchanged. Vascular relaxation to an NO donor (sodium nitroprusside) was enhanced by H(2)O(2), and it was prevented by ODQ (sGC inhibitor). cGMP production in both freshly isolated vessels and RASMCs exposed to H(2)O(2) was greatly increased after sodium nitroprusside treatment. The H(2)O(2)-dependent sGCß1 upregulation was attributable to sGCß1 mRNA stabilization, conditioned by the translocation of the mRNA-binding protein HuR from the nucleus to the cytosol, and the increased mRNA binding of HuR to the sGCß1 3' untranslated region. HuR silencing reversed the effects of H(2)O(2) on sGCß1 levels and cGMP synthesis. CONCLUSIONS: Our results identify H(2)O(2) as an endogenous mediator contributing to the regulation of vascular tone and point to a key role of HuR in sGCß1 mRNA stabilization.


Subject(s)
Antigens, Surface/metabolism , Guanylate Cyclase/genetics , Hydrogen Peroxide/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , 3' Untranslated Regions , Animals , Antigens, Surface/genetics , Aorta/drug effects , Aorta/enzymology , Binding Sites , Catalase/metabolism , Cells, Cultured , Cyclic GMP/metabolism , Dose-Response Relationship, Drug , ELAV Proteins , ELAV-Like Protein 1 , Enzyme Inhibitors/pharmacology , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Nitric Oxide Donors/pharmacology , Protein Transport , RNA Stability/drug effects , RNA-Binding Proteins/genetics , Rats , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Soluble Guanylyl Cyclase , Time Factors , Up-Regulation , Vasodilation/drug effects , Vasodilator Agents/pharmacology
9.
Free Radic Biol Med ; 50(2): 354-62, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21074607

ABSTRACT

In contrast to other cell types, vascular smooth muscle cells modify their phenotype in response to external signals. NADPH oxidase 4 (Nox4) is critical for maintenance of smooth muscle gene expression; however, the underlying mechanisms are incompletely characterized. Using smooth muscle α-actin (SMA) as a prototypical smooth muscle gene and transforming growth factor-ß (TGF-ß) as a differentiating agent, we examined Nox4-dependent signaling. TGF-ß increases Nox4 expression and activity in human aortic smooth muscle cells (HASMC). Transfection of HASMC with siRNA against Nox4 (siNox4) abolishes TGF-ß-induced SMA expression and stress fiber formation. siNox4 also significantly inhibits TGF-ß-stimulated p38MAPK phosphorylation, as well as that of its substrate, mitogen-activated protein kinase-activated protein kinase-2. Moreover, the p38MAPK inhibitor SB-203580 nearly completely blocks the SMA increase induced by TGF-ß. Inhibition of either p38MAPK or NADPH oxidase-derived reactive oxygen species impairs the TGF-ß-induced phosphorylation of Ser103 on serum response factor (SRF) and reduces its transcriptional activity. Binding of SRF to myocardin-related transcription factor (MRTF) is also necessary, because downregulation of MRTF by siRNA abolishes TGF-ß-induced SMA expression. Taken together, these data suggest that Nox4 regulates SMA expression via activation of a p38MAPK/SRF/MRTF pathway in response to TGF-ß.


Subject(s)
Actins/metabolism , NADPH Oxidases/metabolism , Serum Response Factor/metabolism , Stress Fibers/metabolism , Transforming Growth Factor beta/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Actins/genetics , Aorta/cytology , Aorta/metabolism , Blotting, Western , Cells, Cultured , Fluorescent Antibody Technique , Humans , Imidazoles/pharmacology , Luciferases/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , NADPH Oxidase 4 , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/genetics , Phosphorylation/drug effects , Pyridines/pharmacology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Serum Response Factor/genetics , Signal Transduction/drug effects , Stress Fibers/pathology , Transforming Growth Factor beta/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics
10.
Arterioscler Thromb Vasc Biol ; 29(3): 408-15, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19122171

ABSTRACT

OBJECTIVE: Insulin resistance of vascular smooth muscle cells (VSMCs) has been linked to accelerated atherosclerosis in diabetes; however, the effects of insulin on VSMCs remain controversial. Most VSMC insulin receptors are sequestered into insulin-insensitive hybrids with insulin-like growth factor-1 receptors (IGF1Rs). Thus we hypothesized that regulation of IGF1R expression may impact cellular insulin sensitivity. METHODS AND RESULTS: IGF1R expression was increased in aortas from diabetic mice. IGF1R overexpression in VSMCs impaired insulin-induced Akt phosphorylation. Conversely, IGF1R downregulation by siRNA allowed assembly of insulin holoreceptors, enhanced insulin-induced phosphorylation of its receptor, Akt, Erk1/2, and further augmented insulin-induced glucose uptake. IGF1R downregulation uncovered an insulin-induced reduction in activation of NF-kappaB and inhibition of MCP-1 upregulation in response to TNF-alpha. CONCLUSIONS: Downregulation of IGF1R increases the fraction of insulin receptors organized in holoreceptors, which leads to enhanced insulin signaling and unmasks potential antiinflammatory properties of insulin in VSMCs. Therefore, IGF1R, which is susceptible to feedback regulation by its own ligand, may represent a novel target for interventions designed to treat insulin resistance in the vasculature.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Inflammation/metabolism , Insulin Resistance , Insulin/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptor, IGF Type 1/metabolism , Animals , Aorta/metabolism , Cells, Cultured , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/immunology , Disease Models, Animal , Inflammation/enzymology , Inflammation/immunology , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/immunology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/immunology , NF-kappa B/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/genetics , Signal Transduction , Transduction, Genetic , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...