Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2672: 65-77, 2023.
Article in English | MEDLINE | ID: mdl-37335469

ABSTRACT

Fluorimetry analysis of nuclear DNA content allows identification of genome size and ploidy levels of different life phases, tissues, and populations in seaweed species. It is an easy method that saves time and resources compared to more complex techniques. Here we describe the methodology for measuring nuclear DNA content in seaweed species by DAPI fluorochrome staining and its comparison with the standard Gallus gallus erythrocytes nuclear content, one of the preferred internal standards. With this methodology, up to a thousand nuclei can be measured in a single staining session, allowing for a quick analysis of the studied species.


Subject(s)
Seaweed , Ploidies , DNA , Cell Nucleus/genetics , Vegetables/genetics , Fluorometry , Flow Cytometry/methods
2.
Sci Total Environ ; 831: 154772, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35364145

ABSTRACT

Within the Southern Ocean, the greatest warming is occurring on the Antarctic Peninsula (AP) where clear cryospheric and biological consequences are being observed. Antarctic coastal systems harbour a high diversity of marine and terrestrial ecosystems heavily influenced by Antarctic seaweeds (benthonic macroalgae) and bird colonies (mainly penguins). Primary sea spray aerosols (SSA) formed by the outburst of bubbles via the sea-surface microlayer depend on the organic composition of the sea water surface. In order to gain insight into the influence of ocean biology and biogeochemistry on atmospheric aerosol, we performed in situ laboratory aerosol bubble chamber experiments to study the effect of different leachates of biogenic material - obtained from common Antarctic seaweeds as well as penguin guano - on primary SSA. The addition of different leachate materials on a seawater sample showed a dichotomous effect depending on the leachate material added - either suppressing (up to 52%) or enhancing (22-88%) aerosol particle production. We found high ice nucleating particle number concentrations resulting from addition of guano leachate material. Given the evolution of upper marine polar coastal ecosystems in the AP, further studies on ocean-atmosphere coupling are needed in order to represent the currently poorly understood climate feedback processes.


Subject(s)
Seaweed , Spheniscidae , Aerosolized Particles and Droplets , Aerosols/chemistry , Animals , Antarctic Regions , Ecosystem , Seawater/chemistry
3.
PLoS One ; 16(4): e0250629, 2021.
Article in English | MEDLINE | ID: mdl-33930042

ABSTRACT

The marine waters around the South Shetland Islands are paramount in the primary production of this Antarctic ecosystem. With the increasing effects of climate change and the annual retreat of the ice shelf, the importance of macroalgae and their diatom epiphytes in primary production also increases. The relationships and interactions between these organisms have scarcely been studied in Antarctica, and even less in the volcanic ecosystem of Deception Island, which can be seen as a natural proxy of climate change in Antarctica because of its vulcanism, and the open marine system of Livingston Island. In this study we investigated the composition of the diatom communities in the context of their macroalgal hosts and different environmental factors. We used a non-acidic method for diatom digestion, followed by slidescanning and diatom identification by manual annotation through a web-browser-based image annotation platform. Epiphytic diatom species richness was higher on Deception Island as a whole, whereas individual macroalgal specimens harboured richer diatom assemblages on Livingston Island. We hypothesize this a possible result of a higher diversity of ecological niches in the unique volcanic environment of Deception Island. Overall, our study revealed higher species richness and diversity than previous studies of macroalgae-inhabiting diatoms in Antarctica, which could however be the result of the different preparation methodologies used in the different studies, rather than an indication of a higher species richness on Deception Island and Livingston Island than other Antarctic localities.


Subject(s)
Diatoms/physiology , Seaweed/parasitology , Antarctic Regions , Biodiversity , Diatoms/growth & development , Diatoms/isolation & purification , Ecosystem , Islands , Oceans and Seas , Seawater , Species Specificity
4.
Sci Rep ; 10(1): 1639, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005904

ABSTRACT

Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non-native kelp washed up on Antarctic beaches led us to question the permeability of these barriers to species dispersal. According to the literature, over 70 million kelp rafts are afloat in the Southern Ocean at any one time. These living, floating islands can play host to a range of passenger species from both their original coastal location and those picked in the open ocean. Driven by winds, currents and storms towards the coast of the continent, these rafts are often cited as theoretical vectors for the introduction of new species into Antarctica and the sub-Antarctic islands. We found non-native kelps, with a wide range of "hitchhiking" passenger organisms, on an Antarctic beach inside the flooded caldera of an active volcanic island. This is the first evidence of non-native species reaching the Antarctic continent alive on kelp rafts. One passenger species, the bryozoan Membranipora membranacea, is found to be an invasive and ecologically harmful species in some cold-water regions, and this is its first record from Antarctica. The caldera of Deception Island provides considerably milder conditions than the frigid surrounding waters and it could be an ideal location for newly introduced species to become established. These findings may help to explain many of the biogeographic patterns and connections we currently see in the Southern Ocean. However, with the impacts of climate change in the region we may see an increase in the range and number of organisms capable of surviving both the long journey and becoming successfully established.


Subject(s)
Bryozoa/physiology , Introduced Species , Kelp/physiology , Animals , Antarctic Regions , Biodiversity , Climate Change , Ecology/methods , Ecosystem , Islands , Membrane Microdomains/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...