Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Dis ; 22(5): 423-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26919586

ABSTRACT

OBJECTIVE: The objective of this study was to investigate whether histamine H4 receptor (H4 R) antagonists could prevent experimental periodontitis (EP)-induced histological, functional and inflammatory alterations in submandibular gland (SMG), periodontal bone and gingiva. METHODS: Bilateral EP was induced for 2 weeks in anaesthetized male rats. The effect of systemic and local administration of H4 R antagonists (JNJ7777120, JNJ10191584) on histopathology and functionality of SMG, bone loss and gingival inflammation was evaluated. RESULTS: The subcutaneous administration of JNJ7777120 prevented periodontitis-induced SMG histological injury, reducing vacuolization and apoptosis and additionally reversed the increased prostaglandin E2 (PGE2) levels in SMG while it partially reversed the methacholine-induced salivation reduction produced by periodontitis. JNJ7777120 attenuated bone loss and the increased PGE2 levels and inflammatory infiltration in gingival tissue of rats with periodontitis. Finally, local administration of JNJ7777120 and JNJ10191584 was also beneficial for improving periodontal parameters. CONCLUSIONS: H4 receptor antagonists are able to ameliorate periodontitis-induced injury on SMG, gingival tissue and bone structure, suggesting that pharmacological targeting of H4 R could be an attractive strategy to improve periodontal health.


Subject(s)
Histamine Antagonists/pharmacology , Indoles/pharmacology , Periodontal Diseases/prevention & control , Piperazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/pathology , Alveolar Process/drug effects , Alveolar Process/pathology , Animals , Apoptosis/drug effects , Disease Models, Animal , Gingiva/chemistry , Gingiva/drug effects , Gingiva/pathology , Male , Methacholine Chloride/pharmacology , Molecular Targeted Therapy , Periodontal Diseases/pathology , Periodontitis/drug therapy , Periodontitis/pathology , Rats , Rats, Sprague-Dawley , Receptors, Histamine , Receptors, Histamine H4 , Submandibular Gland/drug effects , Submandibular Gland/pathology
2.
Oral Dis ; 21(6): 770-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25926141

ABSTRACT

OBJECTIVES: Searching for more effective and selective therapies for head and neck cancer, we demonstrated the therapeutic effect of boron neutron capture therapy (BNCT) to treat oral cancer and inhibit long-term tumor development from field-cancerized tissue in the hamster cheek pouch model. However, BNCT-induced mucositis in field-cancerized tissue was dose limiting. In a clinical scenario, oral mucositis affects patients' treatment and quality of life. Our aim was to evaluate different radioprotectors, seeking to reduce the incidence of BNCT-induced severe mucositis in field-cancerized tissue. MATERIALS AND METHODS: Cancerized pouches treated with BNCT mediated by boronophenylalanine at 5 Gy were treated as follows: control: saline solution; Hishigh : histamine 5 mg kg(-1) ; Hislow : histamine 1 mg kg(-1) ; and JNJ7777120: 10 mg kg(-1). RESULTS: Hislow reduced the incidence of severe mucositis in field-cancerized tissue to 17% vs CONTROL: 55%; Hishigh : 67%; JNJ7777120: 57%. Hislow was non-toxic and did not compromise the long-term therapeutic effect of BNCT or alter gross boron concentration. CONCLUSION: Histamine reduces BNCT-induced mucositis in experimental oral precancer without jeopardizing therapeutic efficacy. The fact that both histamine and boronophenylalanine are approved for use in humans bridges the gap between experimental work and potential clinical application to reduce BNCT-induced radiotoxicity in patients with head and neck cancer.


Subject(s)
Boron Neutron Capture Therapy/adverse effects , Histamine/therapeutic use , Mouth Neoplasms/radiotherapy , Precancerous Conditions/radiotherapy , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/therapeutic use , Stomatitis/prevention & control , Animals , Cricetinae , Disease Models, Animal , Indoles/therapeutic use , Piperazines/therapeutic use , Radiation Injuries, Experimental/etiology , Stomatitis/etiology
4.
Cell Death Discov ; 1: 15059, 2015.
Article in English | MEDLINE | ID: mdl-27551485

ABSTRACT

The aim of the present work was to evaluate the potential protective effect of histamine on Doxorubicin (Dox)-induced hepatic and cardiac toxicity in different rodent species and in a triple-negative breast tumor-bearing mice model. Male Sprague Dawley rats and Balb/c mice were divided into four groups: control (received saline), histamine (5 mg/kg for rats and 1 mg/kg for mice, daily subcutaneous injection starting 24 h before treatment with Dox), Dox (2 mg/kg, intraperitoneally injected three times a week for 2 weeks) and Dox+histamine (received both treatments). Tissue toxicity was evaluated by histopathological studies and oxidative stress and biochemical parameters. The combined effect of histamine and Dox was also investigated in vitro and in vivo in human MDA-MB-231 triple-negative breast cancer model. Heart and liver of Dox-treated animals displayed severe histological damage, loss of tissue weight, increased TBARS levels and DNA damage along with an augment in serum creatine kinase-myocardial band. Pretreatment with histamine prevented Dox-induced tissue events producing a significant preservation of the integrity of both rat and mouse myocardium and liver, through the reduction of Dox-induced oxidative stress and apoptosis. Histamine treatment preserved anti-tumor activity of Dox, exhibiting differential cytotoxicity and increasing the Dox-induced inhibition of breast tumor growth. Findings provide preclinical evidence indicating that histamine could be a promising candidate as a selective cytoprotective agent for the treatment of Dox-induced cardiac and hepatic toxicity, and encourage the translation to clinical practice.

5.
J Endocrinol ; 222(2): 243-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24928937

ABSTRACT

We have shown in vitro that thyroid hormones (THs) regulate the balance between proliferation and apoptosis of T lymphoma cells. The effects of THs on tumor development have been studied, but the results are still controversial. Herein, we show the modulatory action of thyroid status on the in vivo growth of T lymphoma cells. For this purpose, euthyroid, hypothyroid, and hyperthyroid mice received inoculations of EL4 cells to allow the development of solid tumors. Tumors in the hyperthyroid animals exhibited a higher growth rate, as evidenced by the early appearance of palpable solid tumors and the increased tumor volume. These results are consistent with the rate of cell division determined by staining tumor cells with carboxyfluorescein succinimidyl ester. Additionally, hyperthyroid mice exhibited reduced survival. Hypothyroid mice did not differ significantly from the euthyroid controls with respect to these parameters. Additionally, only tumors from hyperthyroid animals had increased expression levels of proliferating cell nuclear antigen and active caspase 3. Differential expression of cell cycle regulatory proteins was also observed. The levels of cyclins D1 and D3 were augmented in the tumors of the hyperthyroid animals, whereas the cell cycle inhibitors p16/INK4A (CDKN2A) and p27/Kip1 (CDKN1B) and the tumor suppressor p53 (TRP53) were increased in hypothyroid mice. Intratumoral and peritumoral vasculogenesis was increased only in hyperthyroid mice. Therefore, we propose that the thyroid status modulates the in vivo growth of EL4 T lymphoma through the regulation of cyclin, cyclin-dependent kinase inhibitor, and tumor suppressor gene expression, as well as the stimulation of angiogenesis.


Subject(s)
Hyperthyroidism/physiopathology , Hypothyroidism/physiopathology , Lymphoma, T-Cell/physiopathology , Thyroid Gland/physiology , Animals , Apoptosis , Caspase 3/biosynthesis , Cell Cycle Proteins/biosynthesis , Cell Line, Tumor , Cell Proliferation , Cyclin D1/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Female , Hyperthyroidism/complications , Hypothyroidism/complications , Lymphoma, T-Cell/pathology , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neovascularization, Pathologic , Proliferating Cell Nuclear Antigen/biosynthesis , Proliferating Cell Nuclear Antigen/metabolism , Tumor Suppressor Protein p53/biosynthesis
6.
Eur J Histochem ; 56(4): e48, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23361244

ABSTRACT

The aim of this study was to improve knowledge about histamine radioprotective potential investigating its effect on reducing ionising radiation-induced injury and genotoxic damage on the rat small intestine and uterus. Forty 10-week-old male and 40 female Sprague-Dawley rats were divided into 4 groups. Histamine and histamine-5Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 24 h before irradiation. Histamine-5Gy and untreated-5Gy groups were irradiated with a dose of whole-body Cesium-137 irradiation. Three days after irradiation animals were sacrificed and tissues were removed, fixed, and stained with haematoxylin and eosin, and histological characteristics were evaluated. Proliferation, apoptosis and oxidative DNA markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate chromosomal damage. Histamine treatment reduced radiation-induced mucosal atrophy, oedema and vascular damage produced by ionising radiation, increasing the number of crypts per circumference (239 ± 12 vs 160 ± 10; P<0.01). This effect was associated with a reduction of radiation-induced intestinal crypts apoptosis. Additionally, histamine decreased the frequency of micronuclei formation and also significantly attenuated 8-OHdG immunoreactivity, a marker of DNA oxidative damage. Furthermore, radiation induced flattening of the endometrial surface, depletion of deep glands and reduced mitosis, effects that were completely blocked by histamine treatment. The expression of a proliferation marker in uterine luminal and glandular cells was markedly stimulated in histamine treated and irradiated rats. The obtained evidences indicate that histamine is a potential candidate as a safe radioprotective agent that might increase the therapeutic index of radiotherapy for intra-abdominal and pelvic cancers. However, its efficacy needs to be carefully investigated in prospective clinical trials.


Subject(s)
Histamine/pharmacology , Intestine, Small/drug effects , Radiation-Protective Agents/pharmacology , Uterus/drug effects , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Female , Immunohistochemistry , Intestine, Small/pathology , Male , Rats , Rats, Sprague-Dawley , Uterus/pathology , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...