Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8500, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135682

ABSTRACT

Coastal vegetated ecosystems are acknowledged for their capacity to sequester organic carbon (OC), known as blue C. Yet, blue C global accounting is incomplete, with major gaps in southern hemisphere data. It also shows a large variability suggesting that the interaction between environmental and biological drivers is important at the local scale. In southwest Atlantic salt marshes, to account for the space occupied by crab burrows, it is key to avoid overestimates. Here we found that southern southwest Atlantic salt marshes store on average 42.43 (SE = 27.56) Mg OC·ha-1 (40.74 (SE = 2.7) in belowground) and bury in average 47.62 g OC·m-2·yr-1 (ranging from 7.38 to 204.21). Accretion rates, granulometry, plant species and burrowing crabs were identified as the main factors in determining belowground OC stocks. These data lead to an updated global estimation for stocks in salt marshes of 185.89 Mg OC·ha-1 (n = 743; SE = 4.92) and a C burial rate of 199.61 g OC·m-2·yr-1 (n = 193; SE = 16.04), which are lower than previous estimates.


Subject(s)
Brachyura , Wetlands , Animals , Ecosystem , Carbon , Carbon Sequestration
3.
Ambio ; 49(2): 541-556, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31301003

ABSTRACT

Primary production hotspots in the marine environment occur where the combination of light, turbulence, temperature and nutrients makes the proliferation of phytoplankton possible. Satellite-derived surface chlorophyll-a distributions indicate that these conditions are frequently associated with sharp water mass transitions named "marine fronts". Given the link between primary production, consumers and ecosystem functions, marine fronts could play a key role in the production of ecosystem services (ES). Using the shelf break front in the Argentine Sea as a study case, we show that the high primary production found in the front is the main ecological feature that supports the production of tangible (fisheries) and intangible (recreation, regulation of atmospheric gases) marine ES and the reason why the provision of ES in the Argentine Sea concentrates there. This information provides support to satellite chlorophyll as a good indicator of multiple marine ES. We suggest that marine fronts could be considered as marine ES hot spots.


Subject(s)
Ecosystem , Fisheries , Phytoplankton , Temperature
4.
Glob Chang Biol ; 26(3): 1248-1258, 2020 03.
Article in English | MEDLINE | ID: mdl-31758645

ABSTRACT

Predictors for the ecological effects of non-native species are lacking, even though such knowledge is fundamental to manage non-native species and mitigate their impacts. Current theories suggest that the ecological effects of non-native species may be related to other concomitant anthropogenic stressors, but this has not been tested at a global scale. We combine an exhaustive meta-analysis of the ecological effects of marine non-native species with human footprint proxies to determine whether the ecological changes due to non-native species are modulated by co-occurring anthropogenic impacts. We found that non-native species had greater negative effects on native biodiversity where human population was high and caused reductions in individual performance where cumulative human impacts were large. On this basis we identified several marine ecoregions where non-native species may have the greatest ecological effects, including areas in the Mediterranean Sea and along the northwest coast of the United States. In conclusion, our global assessment suggests coexisting anthropogenic impacts can intensify the ecological effects of non-native species.


Subject(s)
Ecosystem , Introduced Species , Biodiversity , Ecology , Humans , Mediterranean Sea
5.
Nat Ecol Evol ; 3(9): 1367, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31375777

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Ecol Evol ; 3(5): 787-800, 2019 05.
Article in English | MEDLINE | ID: mdl-30962561

ABSTRACT

Exotic species are a growing global ecological threat; however, their overall effects are insufficiently understood. While some exotic species are implicated in many species extinctions, others can provide benefits to the recipient communities. Here, we performed a meta-analysis to quantify and synthesize the ecological effects of 76 exotic marine species (about 6% of the listed exotics) on ten variables in marine communities. These species caused an overall significant, but modest in magnitude (as indicated by a mean effect size of g < 0.2), decrease in ecological variables. Marine primary producers and predators were the most disruptive trophic groups of the exotic species. Approximately 10% (that is, 2 out of 19) of the exotic species assessed in at least three independent studies had significant impacts on native species. Separating the innocuous from the disruptive exotic species provides a basis for triage efforts to control the marine exotic species that have the most impact, thereby helping to meet Aichi Biodiversity Target 9 of the Convention on Biological Diversity.


Subject(s)
Biodiversity , Introduced Species , Ecology , Extinction, Biological
7.
Mar Environ Res ; 146: 71-79, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30922605

ABSTRACT

Using C and N isotopic signatures of food web components, we evaluated the land-marine coupling through nutrient flows and the likely changes in the food web structure in tidal channels with contrasting anthropogenic nutrient inputs at a semi desert-macrotidal coastal system (northern Argentine Patagonia). The results showed an increase in the δ13C signatures of primary producers and in the δ15N signatures in all levels of the benthic food web, from primary producers to predators, with possible changes in the relative contribution of primary food sources for consumer in the tidal channel with high anthropogenic N input. This is an example on the extent of the distribution of anthropogenic N into natural systems, flowing through the food web from terrestrial origin to coastal marine components.


Subject(s)
Carbon Isotopes/analysis , Eutrophication , Nitrogen Isotopes/analysis , Animals , Argentina , Ecosystem , Environmental Monitoring/methods , Food Chain , Oceans and Seas
8.
Mar Environ Res ; 137: 133-144, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29555298

ABSTRACT

Foliar stable isotopic signatures of nitrogen, carbon, and sulfur in mangrove vegetation from the Pacific coast of Panama were insensitive to inputs from watersheds with different area of forest land cover, and to seasonal, inter-annual, and global-scale-driven contrasts in rainfall and upwelling. N, C, and S content of mangrove vegetation were not affected by inputs from watersheds with different degrees of deforestation, but showed some influence of down-estuary transformations. While there was substantial variation that remained un-explained, isotopic signatures and nutrient contents were largely determined by species-specific features, and showed substantial small-scale variation reflecting local differences, within-estuary plant-sediment links. The ability of mangrove estuaries to erase effects of deforestation points out that conservation of these wetland ecosystems is important, because, at least in the sites we studied, transformations within mangrove estuaries were strong enough to protect water quality in receiving coastal waters.


Subject(s)
Conservation of Natural Resources , Estuaries , Wetlands , Ecosystem , Panama
9.
Mar Environ Res ; 103: 95-102, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481652

ABSTRACT

Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean δ(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The δ(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring , Food Chain , Wetlands , Carbon Isotopes/analysis , Estuaries , Nitrogen Isotopes/analysis , Panama , Sulfur Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...