Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(6): 1047-1054, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33465233

ABSTRACT

ABSTRACT: Food manufacturers often use squeegees as a tool to remove condensation from overhead surfaces. This practice is done to reduce the likelihood of environmental pathogen contamination by eliminating condensed-water droplets that could fall from overhead surfaces during production. However, this practice may actually spread environmental pathogens across these surfaces, defeating its purpose and further increasing the risk for contamination in the processing area. To understand the risk associated with this common practice, test pipes inoculated with Listeria innocua ATCC 33090 were exposed to steam to produce condensation, which was then removed by squeegees. The pipe surfaces, droplets, and squeegees were subsequently analyzed for Listeria to determine the distance the organism spread across the pipe and how many organisms were transferred to the droplets and the squeegees. Results showed that Listeria traveled as far as 16 in. across the surface of the pipe, and bacterial transfer to the droplets decreased as the squeegee traveled further from the contaminated area. Sanitizers alone were able to remove about 1 to 2 log CFU of Listeria per in2 from the squeegee blades when materials were contaminated with Listeria (>6 log CFU/in2). Among the cleaning protocols evaluated, an extensive cleaning regimen was able to remove 3 to 4 log CFU/in2, which would be recommended to reduce the risk associated with environmental pathogen transfer. This study provides evidence that supports recommendations for minimizing the cross-contamination risk associated with condensation management practices.


Subject(s)
Listeria monocytogenes , Listeria , Colony Count, Microbial , Food Contamination/analysis , Food Handling , Food Microbiology
2.
J Dairy Sci ; 100(2): 919-932, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27988120

ABSTRACT

Spore-forming bacteria are heat-resistant microorganisms capable of surviving and germinating in milk after pasteurization. They have been reported to affect the quality of dairy products by the production of enzymes (lipolytic and proteolytic) under low-temperature conditions in fluid milk, and have become a limiting factor for milk powder in reaching some selective markets. The objective of this research was to isolate and identify the population of spore-forming bacteria (psychrotrophic and thermophilic strains) associated with concentrated milk processing in Nebraska. During 2 seasons, in-process milk samples from a commercial plant (raw, pasteurized, and concentrated) were collected and heat-treated (80°C/12 min) to recover only spore-formers. Samples were spread-plated using standard methods agar and incubated at 32°C to enumerate mesophilic spore counts. Heat-treated samples were also stored at 7°C and 55°C to recover spore-formers that had the ability to grow under those temperature conditions. Isolates obtained from incubation or storage conditions were identified using molecular techniques (16S or rpoB sequencing). Based on the identification of the isolates and their relatedness, strains found in raw, pasteurized, and concentrated milk were determined to be similar. Paenibacillus spp. were associated with both raw and concentrated milk. Due to their known ability to cause spoilage under refrigeration, this shows the potential risk associated with the transferring of these problematic organisms into other dairy products. Other Bacillus species found in concentrated milk included Bacillus clausii, Bacillus subtilis, Lysinibacillus sp., Bacillus safensis, Bacillus licheniformis, Bacillus sonorensis, and Brevibacillus sp., with the last 3 organisms being capable of growing at thermophilic temperatures. These strains can also be translocated to other dairy products, such as milk powder, representing a quality problem. The results of this research highlight the importance of understanding spore-formers associated with the processing of condensed milk, which then may allow for specific interventions to be applied to control these microorganisms in this processing chain. To our knowledge, this is the first study evaluating spore-formers associated with concentrated milk in the United States.


Subject(s)
Milk/microbiology , Spores, Bacterial/isolation & purification , Animals , Colony Count, Microbial , Food Microbiology , Nebraska , Pasteurization
SELECTION OF CITATIONS
SEARCH DETAIL
...