Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
3.
IEEE Trans Pattern Anal Mach Intell ; 40(9): 2037-2050, 2018 09.
Article in English | MEDLINE | ID: mdl-28858786

ABSTRACT

Linear regression is a fundamental building block in many face detection and tracking algorithms, typically used to predict shape displacements from image features through a linear mapping. This paper presents a Functional Regression solution to the least squares problem, which we coin Continuous Regression, resulting in the first real-time incremental face tracker. Contrary to prior work in Functional Regression, in which B-splines or Fourier series were used, we propose to approximate the input space by its first-order Taylor expansion, yielding a closed-form solution for the continuous domain of displacements. We then extend the continuous least squares problem to correlated variables, and demonstrate the generalisation of our approach. We incorporate Continuous Regression into the cascaded regression framework, and show its computational benefits for both training and testing. We then present a fast approach for incremental learning within Cascaded Continuous Regression, coined iCCR, and show that its complexity allows real-time face tracking, being 20 times faster than the state of the art. To the best of our knowledge, this is the first incremental face tracker that is shown to operate in real-time. We show that iCCR achieves state-of-the-art performance on the 300-VW dataset, the most recent, large-scale benchmark for face tracking.


Subject(s)
Face/anatomy & histology , Image Processing, Computer-Assisted/methods , Linear Models , Pattern Recognition, Automated/methods , Algorithms , Databases, Factual , Humans , Machine Learning
4.
IEEE Trans Affect Comput ; 7(4): 435-451, 2016.
Article in English | MEDLINE | ID: mdl-30906508

ABSTRACT

Pain-related emotions are a major barrier to effective self rehabilitation in chronic pain. Automated coaching systems capable of detecting these emotions are a potential solution. This paper lays the foundation for the development of such systems by making three contributions. First, through literature reviews, an overview of how pain is expressed in chronic pain and the motivation for detecting it in physical rehabilitation is provided. Second, a fully labelled multimodal dataset (named 'EmoPain') containing high resolution multiple-view face videos, head mounted and room audio signals, full body 3D motion capture and electromyographic signals from back muscles is supplied. Natural unconstrained pain related facial expressions and body movement behaviours were elicited from people with chronic pain carrying out physical exercises. Both instructed and non-instructed exercises were considered to reflect traditional scenarios of physiotherapist directed therapy and home-based self-directed therapy. Two sets of labels were assigned: level of pain from facial expressions annotated by eight raters and the occurrence of six pain-related body behaviours segmented by four experts. Third, through exploratory experiments grounded in the data, the factors and challenges in the automated recognition of such expressions and behaviour are described, the paper concludes by discussing potential avenues in the context of these findings also highlighting differences for the two exercise scenarios addressed.

5.
IEEE Trans Cybern ; 44(2): 161-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23757539

ABSTRACT

Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial expressions of six basic emotions. Facial dynamics can be explicitly analyzed by detecting the constituent temporal segments in Facial Action Coding System (FACS) Action Units (AUs)-onset, apex, and offset. In this paper, we present a novel approach to explicit analysis of temporal dynamics of facial actions using the dynamic appearance descriptor Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP). Temporal segments are detected by combining a discriminative classifier for detecting the temporal segments on a frame-by-frame basis with Markov Models that enforce temporal consistency over the whole episode. The system is evaluated in detail over the MMI facial expression database, the UNBC-McMaster pain database, the SAL database, the GEMEP-FERA dataset in database-dependent experiments, in cross-database experiments using the Cohn-Kanade, and the SEMAINE databases. The comparison with other state-of-the-art methods shows that the proposed LPQ-TOP method outperforms the other approaches for the problem of AU temporal segment detection, and that overall AU activation detection benefits from dynamic appearance information.


Subject(s)
Biometry/methods , Face/anatomy & histology , Face/physiology , Facial Expression , Image Interpretation, Computer-Assisted/methods , Multimodal Imaging/methods , Pattern Recognition, Automated/methods , Algorithms , Artificial Intelligence , Computer Simulation , Humans , Models, Biological , Models, Statistical , Photography/methods , Reproducibility of Results , Sensitivity and Specificity
6.
IEEE Trans Pattern Anal Mach Intell ; 35(5): 1149-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23520256

ABSTRACT

We propose a new algorithm to detect facial points in frontal and near-frontal face images. It combines a regression-based approach with a probabilistic graphical model-based face shape model that restricts the search to anthropomorphically consistent regions. While most regression-based approaches perform a sequential approximation of the target location, our algorithm detects the target location by aggregating the estimates obtained from stochastically selected local appearance information into a single robust prediction. The underlying assumption is that by aggregating the different estimates, their errors will cancel out as long as the regressor inputs are uncorrelated. Once this new perspective is adopted, the problem is reformulated as how to optimally select the test locations over which the regressors are evaluated. We propose to extend the regression-based model to provide a quality measure of each prediction, and use the shape model to restrict and correct the sampling region. Our approach combines the low computational cost typical of regression-based approaches with the robustness of exhaustive-search approaches. The proposed algorithm was tested on over 7,500 images from five databases. Results showed significant improvement over the current state of the art.


Subject(s)
Biometric Identification/methods , Face/anatomy & histology , Image Processing, Computer-Assisted/methods , Regression Analysis , Databases, Factual , Humans , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...