Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 25(6): 669-83, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18399701

ABSTRACT

Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.


Subject(s)
Imaging, Three-Dimensional , Models, Molecular , RNA/chemistry , Software , Base Sequence , Computer Graphics , Molecular Sequence Data , Nanostructures/chemistry , Nucleic Acid Conformation
2.
Proc Natl Acad Sci U S A ; 104(17): 7057-61, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17438284

ABSTRACT

The intrinsic chemical reaction of adenosine triphosphate (ATP) hydrolysis catalyzed by myosin is modeled by using a combined quantum mechanics and molecular mechanics (QM/MM) methodology that achieves a near ab initio representation of the entire model. Starting with coordinates derived from the heavy atoms of the crystal structure (Protein Data Bank ID code 1VOM) in which myosin is bound to the ATP analog ADP.VO(4)(-), a minimum-energy path is found for the transformation ATP + H(2)O --> ADP + P(i) that is characterized by two distinct events: (i) a low activation-energy cleavage of the P(gamma) O(betagamma) bond and separation of the gamma-phosphate from ADP and (ii) the formation of the inorganic phosphate as a consequence of proton transfers mediated by two water molecules and assisted by the Glu-459-Arg-238 salt bridge of the protein. The minimum-energy model of the enzyme-substrate complex features a stable hydrogen-bonding network in which the lytic water is positioned favorably for a nucleophilic attack of the ATP gamma-phosphate and for the transfer of a proton to stably bound second water. In addition, the P(gamma) O(betagamma) bond has become significantly longer than in the unbound state of the ATP and thus is predisposed to cleavage. The modeled transformation is viewed as the part of the overall hydrolysis reaction occurring in the closed enzyme pocket after ATP is bound tightly to myosin and before conformational changes preceding release of inorganic phosphate.


Subject(s)
Adenosine Triphosphate/metabolism , Dictyostelium/metabolism , Models, Molecular , Myosins/metabolism , Animals , Biomechanical Phenomena , Catalysis , Computer Simulation , Hydrolysis , Molecular Conformation , Myosins/chemistry , Quantum Theory , Thermodynamics
3.
J Biomol Struct Dyn ; 20(3): 397-412, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12437378

ABSTRACT

Recognition of an RNA loop by another RNA loop is involved in several biological functions. The dimerization of two copies of the HIV-1 genomic RNA is thought to be involved in several steps of the retroviral life cycle. It has been shown that the dimerization of the two HIV-1 RNA genomes is initiated by the so called kissing loop. The 9nt kissing loop consists of a palindromic 6nt sequence that forms Watson-Crick base-pairs at the kissing site in HIV-1. We report the results of our molecular modeling and dynamics studies on two major subtype isolates (MAL and LAI) of HIV-1 kissing loop structures. From our modeling studies, we conclude that the conformation of the loop in the monomer might be closer to the A-RNA-like conformation in order to form an initial kissing structure. This is achieved by the stacking interactions of the bases at the 3' end of the loop and by the intramolecular tertiary interactions of a single linker nucleotide. We discuss the effect of the loop size and the structural limitations on the formation of kissing loop structures. Also, we propose a possible mechanism to convert the kissing loop structure to a stable extended duplex structure without unwinding the stems.


Subject(s)
HIV-1/genetics , RNA, Viral/chemistry , Base Composition , Base Pairing , Base Sequence , Dimerization , Humans , Hydrogen Bonding , Ions , Kinetics , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Viral/metabolism , Sodium/metabolism , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...