Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767512

ABSTRACT

Genome editing has the potential to treat genetic diseases in a variety of tissues including the lung. We have previously developed and validated a dual adeno-associated virus (AAV) CRISPR platform that supports effective editing in the airways of mice. To validate this delivery vehicle in a large animal model, we have shown that intratracheal instillation of CRISPR/Cas9 in AAV5 can edit a housekeeping gene or a disease-related gene in the lungs of young rhesus monkeys. We observed up to 8% editing of ACE2 in lung lobes after single-dose administration. Single-nuclear RNA-sequencing revealed that AAV5 transduces multiple cell types in the caudal lung lobes, including alveolar cells, macrophages, fibroblasts, endothelial cells, and B cells. These results demonstrate that AAV5 is efficient in the delivery of CRISPR/Cas9 in the lung lobes of young rhesus monkeys.

2.
Bioengineering (Basel) ; 10(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37237620

ABSTRACT

Transplantation of allogeneic donor ovarian tissue holds great potential for female cancer survivors who often experience premature ovarian insufficiency. To avoid complications associated with immune suppression and to protect transplanted ovarian allografts from immune-mediated injury, we have developed an immunoisolating hydrogel-based capsule that supports the function of ovarian allografts without triggering an immune response. Encapsulated ovarian allografts implanted in naïve ovariectomized BALB/c mice responded to the circulating gonadotropins and maintained function for 4 months, as evident by regular estrous cycles and the presence of antral follicles in the retrieved grafts. In contrast to non-encapsulated controls, repeated implantations of encapsulated mouse ovarian allografts did not sensitize naïve BALB/c mice, which was confirmed with undetectable levels of alloantibodies. Further, encapsulated allografts implanted in hosts previously sensitized by the implantation of non-encapsulated allografts restored estrous cycles similarly to our results in naïve recipients. Next, we tested the translational potential and efficiency of the immune-isolating capsule in a rhesus monkey model by implanting encapsulated ovarian auto- and allografts in young ovariectomized animals. The encapsulated ovarian grafts survived and restored basal levels of urinary estrone conjugate and pregnanediol 3-glucuronide during the 4- and 5-month observation periods. We demonstrate, for the first time, that encapsulated ovarian allografts functioned for months in young rhesus monkeys and sensitized mice, while the immunoisolating capsule prevented sensitization and protected the allograft from rejection.

3.
Front Immunol ; 12: 686437, 2021.
Article in English | MEDLINE | ID: mdl-34079560

ABSTRACT

Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) and is primarily transmitted by Aedes species mosquitoes; however, ZIKV can also be sexually transmitted. During the initial epidemic and in places where ZIKV is now considered endemic, it is difficult to disentangle the risks and contributions of sexual versus vector-borne transmission to adverse pregnancy outcomes. To examine the potential impact of sexual transmission of ZIKV on pregnancy outcome, we challenged three rhesus macaques (Macaca mulatta) three times intravaginally with 1 x 107 PFU of a low passage, African lineage ZIKV isolate (ZIKV-DAK) in the first trimester (~30 days gestational age). Samples were collected from all animals initially on days 3 through 10 post challenge, followed by twice, and then once weekly sample collection; ultrasound examinations were performed every 3-4 days then weekly as pregnancies progressed. All three dams had ZIKV RNA detectable in plasma on day 3 post-ZIKV challenge. At approximately 45 days gestation (17-18 days post-challenge), two of the three dams were found with nonviable embryos by ultrasound. Viral RNA was detected in recovered tissues and at the maternal-fetal interface (MFI) in both cases. The remaining viable pregnancy proceeded to near term (~155 days gestational age) and ZIKV RNA was detected at the MFI but not in fetal tissues. These results suggest that sexual transmission of ZIKV may represent an underappreciated risk of pregnancy loss during early gestation.


Subject(s)
Embryo Loss/virology , Vagina/virology , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Embryo Loss/veterinary , Female , Gestational Age , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/virology , RNA, Viral/genetics , Vagina/pathology , Zika Virus/genetics , Zika Virus Infection/virology
4.
Cereb Cortex ; 31(5): 2309-2321, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33341889

ABSTRACT

Zika virus is a teratogen similar to other neurotropic viruses, notably cytomegalovirus and rubella. The goal of these studies was to address the direct impact of Zika virus on fetal development by inoculating early gestation fetal rhesus monkeys using an ultrasound-guided approach (intraperitoneal vs. intraventricular). Growth and development were monitored across gestation, maternal samples collected, and fetal tissues obtained in the second trimester or near term. Although normal growth and anatomical development were observed, significant morphologic changes were noted in the cerebral cortex at 3-weeks post-Zika virus inoculation including massive alterations in the distribution, density, number, and morphology of microglial cells in proliferative regions of the fetal cerebral cortex; an altered distribution of Tbr2+ neural precursor cells; increased diameter and volume of blood vessels in the cortical proliferative zones; and a thinner cortical plate. At 3-months postinoculation, alterations in morphology, distribution, and density of microglial cells were also observed with an increase in blood vessel volume; and a thinner cortical plate. Only transient maternal viremia was observed but sustained maternal immune activation was detected. Overall, these studies suggest persistent changes in cortical structure result from early gestation Zika virus exposure with durable effects on microglial cells.


Subject(s)
Neural Stem Cells/virology , Zika Virus Infection/complications , Zika Virus Infection/virology , Zika Virus/pathogenicity , Animals , Fetal Development/physiology , Fetus/virology , Macaca mulatta/virology , Microcephaly/virology , Neurogenesis/physiology
5.
Front Mol Neurosci ; 14: 789913, 2021.
Article in English | MEDLINE | ID: mdl-35153670

ABSTRACT

Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.

6.
Hum Gene Ther ; 28(5): 385-391, 2017 05.
Article in English | MEDLINE | ID: mdl-28125921

ABSTRACT

The liver is a major off-target organ in gene therapy approaches for cardiac and musculoskeletal disorders. Intravenous administration of most of the naturally occurring adeno-associated virus (AAV) strains invariably results in vector genome sequestration within the liver. In the current study, we compared the muscle tropism and transduction efficiency of a liver de-targeted AAV variant to AAV9 following systemic administration in newborn rhesus monkeys. In vivo bioluminescence imaging was performed to monitor transgene expression (firefly luciferase) post administration. Results indicated comparable and sustained levels of systemic firefly luciferase gene expression in skeletal muscle over a period of two years. Quantitation of vector biodistribution in harvested tissues post-administration revealed widespread recovery of vector genomes delivered by AAV9 but markedly decreased levels in major systemic organs from the AAV variant. These studies validate the translational potential and safety of liver de-targeted AAV strains for gene therapy of muscle-related diseases.


Subject(s)
Genetic Therapy , Genetic Vectors/therapeutic use , Heart Diseases/therapy , Muscle, Skeletal/metabolism , Animals , Dependovirus/genetics , Gene Expression Regulation , Gene Transfer Techniques , Heart/physiopathology , Heart Diseases/genetics , Humans , Liver/metabolism , Macaca mulatta , Muscle, Skeletal/pathology , Tissue Distribution , Transduction, Genetic
7.
PLoS One ; 10(12): e0143849, 2015.
Article in English | MEDLINE | ID: mdl-26645109

ABSTRACT

Despite the enthusiasm for bioengineering of functional renal tissues for transplantation, many obstacles remain before the potential of this technology can be realized in a clinical setting. Viable tissue engineering strategies for the kidney require identification of the necessary cell populations, efficient scaffolds, and the 3D culture conditions to develop and support the unique architecture and physiological function of this vital organ. Our studies have previously demonstrated that decellularized sections of rhesus monkey kidneys of all age groups provide a natural extracellular matrix (ECM) with sufficient structural properties with spatial and organizational influences on human embryonic stem cell (hESC) migration and differentiation. To further explore the use of decellularized natural kidney scaffolds for renal tissue engineering, pluripotent hESC were seeded in whole- or on sections of kidney ECM and cell migration and phenotype compared with the established differentiation assays for hESC. Results of qPCR and immunohistochemical analyses demonstrated upregulation of renal lineage markers when hESC were cultured in decellularized scaffolds without cytokine or growth factor stimulation, suggesting a role for the ECM in directing renal lineage differentiation. hESC were also differentiated with growth factors and compared when seeded on renal ECM or a new biologically inert polysaccharide scaffold for further maturation. Renal lineage markers were progressively upregulated over time on both scaffolds and hESC were shown to express signature genes of renal progenitor, proximal tubule, endothelial, and collecting duct populations. These findings suggest that natural scaffolds enhance expression of renal lineage markers particularly when compared to embryoid body culture. The results of these studies show the capabilities of a novel polysaccharide scaffold to aid in defining a protocol for renal progenitor differentiation from hESC, and advance the promise of tissue engineering as a source of functional kidney tissue.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Kidney/cytology , Tissue Engineering , Tissue Scaffolds , Animals , Cell Line , Humans , Macaca mulatta
8.
PLoS One ; 10(8): e0136758, 2015.
Article in English | MEDLINE | ID: mdl-26317980

ABSTRACT

Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.


Subject(s)
Carcinoma, Renal Cell/metabolism , Cell Culture Techniques/methods , Kidney Neoplasms/metabolism , Organoids/metabolism , Tissue Scaffolds/chemistry , Carcinoma, Renal Cell/pathology , Female , Humans , Kidney Neoplasms/pathology , Male , Organoids/pathology , Tumor Cells, Cultured
9.
Anat Rec (Hoboken) ; 293(11): 1971-83, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20818613

ABSTRACT

Nonhuman primates share many developmental similarities with humans, thus they provide an important preclinical model for understanding the ontogeny of biomarkers of kidney development and assessing new cell-based therapies to treat human disease. To identify morphological and developmental changes in protein and RNA expression patterns during nephrogenesis, immunohistochemistry and quantitative real-time PCR were used to assess temporal and spatial expression of WT1, Pax2, Nestin, Synaptopodin, alpha-smooth muscle actin (α-SMA), CD31, vascular endothelial growth factor (VEGF), and Gremlin. Pax2 was expressed in the condensed mesenchyme surrounding the ureteric bud and in the early renal vesicle. WT1 and Nestin were diffusely expressed in the metanephric mesenchyme, and expression increased as the Pax2-positive condensed mesenchyme differentiated. The inner cleft of the tail of the S-shaped body contained the podocyte progenitors (visceral epithelium) that were shown to express Pax2, Nestin, and WT1 in the early second trimester. With maturation of the kidney, Pax2 expression diminished in these structures, but was retained in cells of the parietal epithelium, and as WT1 expression was upregulated. Mature podocytes expressing WT1, Nestin, and Synaptopodin were observed from the mid-third trimester through adulthood. The developing glomerulus was positive for α-SMA (vascular smooth muscle) and Gremlin (mesangial cells), CD31 (glomerular endothelium), and VEGF (endothelium), and showed loss of expression of these markers as glomerular maturation was completed. These data form the basis for understanding nephrogenesis in the rhesus monkey and will be useful in translational studies that focus on embryonic stem and other progenitor cell populations for renal tissue engineering and repair.


Subject(s)
Fetal Development/physiology , Gene Expression Regulation, Developmental/physiology , Kidney/embryology , Kidney/metabolism , Macaca mulatta/embryology , Macaca mulatta/metabolism , Actins/metabolism , Animals , Biomarkers/metabolism , Endothelium/embryology , Endothelium/metabolism , Female , Intermediate Filament Proteins/metabolism , Kidney Glomerulus/embryology , Kidney Glomerulus/metabolism , Nerve Tissue Proteins/metabolism , Nestin , PAX2 Transcription Factor/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Pregnancy , Vascular Endothelial Growth Factor A/metabolism , WT1 Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...