Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717398

ABSTRACT

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Subject(s)
Biomarkers , Delta Rhythm , Humans , Biomarkers/metabolism , Delta Rhythm/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Male , Nonlinear Dynamics , Female , Adult , Epilepsy, Temporal Lobe/physiopathology
2.
Phys Rev E ; 107(5-1): 054402, 2023 May.
Article in English | MEDLINE | ID: mdl-37329070

ABSTRACT

Purkinje cells exhibit a reduction of the mean firing rate at intermediate-noise intensities, which is somewhat reminiscent of the response enhancement known as "stochastic resonance" (SR). Although the comparison with the stochastic resonance ends here, the current phenomenon has been given the name "inverse stochastic resonance" (ISR). Recent research has demonstrated that the ISR effect, like its close relative "nonstandard SR" [or, more correctly, noise-induced activity amplification (NIAA)], has been shown to stem from the weak-noise quenching of the initial distribution, in bistable regimes where the metastable state has a larger attraction basin than the global minimum. To understand the underlying mechanism of the ISR and NIAA phenomena, we study the probability distribution function of a one-dimensional system subjected to a bistable potential that has the property of symmetry, i.e., if we change the sign of one of its parameters, we can obtain both phenomena with the same properties in the depth of the wells and the width of their basins of attraction subjected to Gaussian white noise with variable intensity. Previous work has shown that one can theoretically determine the probability distribution function using the convex sum between the behavior at small and high noise intensities. To determine the probability distribution function more precisely, we resort to the "weighted ensemble Brownian dynamics simulation" model, which provides an accurate estimate of the probability distribution function for both low and high noise intensities and, most importantly, for the transition of both behaviors. In this way, on the one hand, we show that both phenomena emerge from a metastable system where, in the case of ISR, the global minimum of the system is in a state of lower activity, while in the case of NIAA, the global minimum is in a state of increased activity, the importance of which does not depend on the width of the basins of attraction. On the other hand, we see that quantifiers such as Fisher information, statistical complexity, and especially Shannon entropy fail to distinguish them, but they show the existence of the mentioned phenomena. Thus, noise management may well be a mechanism by which Purkinje cells find an efficient way to transmit information in the cerebral cortex.


Subject(s)
Neurons , Noise , Stochastic Processes , Neurons/physiology , Likelihood Functions , Normal Distribution
3.
Chaos ; 33(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37097953

ABSTRACT

In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson's and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input-output with easy numerical implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and Fisher's information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more complex spectrum within the complexity-entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.


Subject(s)
Algorithms , Nonlinear Dynamics , Humans , Brain , Neurons
4.
Chaos ; 32(9): 093151, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36182366

ABSTRACT

Intracranial electroencephalography (iEEG) can directly record local field potentials (LFPs) from a large set of neurons in the vicinity of the electrode. To search for possible epileptic biomarkers and to determine the epileptogenic zone that gives rise to seizures, we investigated the dynamics of basal and preictal signals. For this purpose, we explored the dynamics of the recorded time series for different frequency bands considering high-frequency oscillations (HFO) up to 240 Hz. We apply a Hilbert transform to study the amplitude and phase of the signals. The dynamics of the different frequency bands in the time causal entropy-complexity plane, H × C, is characterized by comparing the dynamical evolution of the basal and preictal time series. As the preictal states evolve closer to the time in which the epileptic seizure starts, the, H × C, dynamics changes for the higher frequency bands. The complexity evolves to very low values and the entropy becomes nearer to its maximal value. These quasi-stable states converge to equiprobable states when the entropy is maximal, and the complexity is zero. We could, therefore, speculate that in this case, it corresponds to the minimization of Gibbs free energy. In this case, the maximum entropy is equivalent to the principle of minimum consumption of resources in the system. We can interpret this as the nature of the system evolving temporally in the preictal state in such a way that the consumption of resources by the system is minimal for the amplitude in frequencies between 220-230 and 230-240 Hz.


Subject(s)
Electroencephalography , Epilepsy , Biomarkers , Entropy , Humans , Seizures
SELECTION OF CITATIONS
SEARCH DETAIL
...