Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13687, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37607958

ABSTRACT

Resolution can be defined as the minimum distance between two consecutive sampling points taken by an instrument. In acoustic surveys, the main parameter determining the resolution of sampling along a transect is the distance between successive echosounder transmissions or "pings". An increase in either the time interval between pings or the speed of the vessel increases the inter-ping distance, hence decreasing the effective sampling resolution. This study investigated whether a loss in along-transect resolution affects the mean backscattered acoustic energy, leading to uncertainty and/or bias in abundance estimates. To this end, a real acoustic survey was echo-integrated, followed by the application of a systematic resampling scheme to simulate a decrease in pinging resolution. For each transect, the mean backscattered acoustic energy calculated at each resolution was compared with that at the original resolution. Transects were characterised according to their heterogeneity and spatial autocorrelation to investigate their effect on the relationship between abundance error and sampling resolution. Uncertainty was seen to increase with decreasing resolution, with higher heterogeneity and lower spatial autocorrelation accelerating the rise in imprecision. Although the mean bias across replicates was zero, the asymmetry of the bias distributions increased with decreasing resolution, leading to an increasing probability and magnitude of underestimation ( https://aztigps.shinyapps.io/PingRateStudio/ ).

2.
Sci Data ; 8(1): 259, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599197

ABSTRACT

We provide the raw acoustic data collected from the R/V Hesperides during the global Malaspina 2010 Spanish Circumnavigation Expedition (14th December 2010, Cádiz-14th July 2011, Cartagena) using a Simrad EK60 scientific echosounder operating at 38 and 120 kHz. The cruise was divided into seven legs: leg 1 (14th December 2010, Cádiz-13th January 2011, Rio de Janeiro), leg 2 (17th January 2011, Rio de Janeiro-6th February 2011, Cape Town), leg 3 (11th February 2011, Cape Town-13th March 2011, Perth), leg 4 (17th March 2011, Perth-30th March 2011, Sydney), leg 5 (16th April 2011, Auckland-8th May 2011, Honolulu), leg 6 (13th May 2011, Honolulu-10th June 2011, Cartagena de Indias) and leg 7 (19th June 2011, Cartagena de Indias-14th July 2011, Cartagena). The echosounder was calibrated at the start of the expedition and calibration parameters were updated in the data acquisition software (ER60) i.e., the logged raw data are calibrated. We also provide a data summary of the acoustic data in the form of post-processed products.

3.
Sci Adv ; 3(5): e1602468, 2017 May.
Article in English | MEDLINE | ID: mdl-28580419

ABSTRACT

The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

SELECTION OF CITATIONS
SEARCH DETAIL
...