Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Med Phys ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767310

ABSTRACT

BACKGROUND: In radiotherapy, it is essential to deliver prescribed doses to tumors while minimizing damage to surrounding healthy tissue. Accurate measurements of absorbed dose are required for this purpose. Gafchromic® external beam therapy (EBT) radiochromic films have been widely used in radiotherapy. While the dosimetric characteristics of the EBT3 model film have been extensively studied for photon and charged particle beams (protons, electrons, and carbon ions), little research has been done on α $\alpha$ -particle dosimetry. α $\alpha$ -emitting radionuclides have gained popularity in cancer treatment due to their high linear energy transfer, short range in tissue, and ability to spare surrounding organs at risk, thereby delivering a more localized dose distribution to the tumor. Therefore, a dose-calibration film protocol for α $\alpha$ -particles is required. PURPOSE: This study aimed to develop a dose-calibration protocol for the α $\alpha$ -particle emitting radionuclide 241Am, using Monte Carlo (MC) simulations and measurements with unlaminated EBT3 films. METHODS: In this study, a MC-based user code was developed using the Geant4 simulation toolkit to model and simulate an 241Am source and an unlaminated EBT3 film. Two simulations were performed: one with voxelized geometries of the EBT3 active volume composition and the other using water. The dose rate was calculated within a region of interest in the voxelized geometries. Unlaminated EBT3 film pieces were irradiated with the 241Am source at various exposure times inside a black box. Film irradiations were compared to a 6-MV photon beam from a Varian TrueBeam machine. The simulated dose rate was used to convert the exposure times into absorbed doses to water, describing a radiochromic-film-based reference dosimetry protocol for α $\alpha$ -particles. The irradiated films were scanned and through an in-house Python script, the normalized pixel values from the green-color channel of scanned film images were analyzed. RESULTS: The 241Am energy spectra obtained from the simulations were in good agreement with IAEA and NIST databases, having differences < $<$ 0.516% for the emitted γ $\gamma$ -rays and produced characteristic x-rays and < $<$ 0.006% for the α $\alpha$ -particles. Due to the short range of α $\alpha$ -particles, there was no energy deposition in the voxels outside the active 241Am source region projected onto the film surface. Thus, the total dose rate within the voxels covering the source was 0.847 ± $\pm$ 0.003 Gy/min within the sensitive layer of the film (LiPCDA) and 0.847 ± $\pm$ 0.004 Gy/min in water, indicating that the active volume can be considered water equivalent for the 241Am beam quality. A novel approach was employed in α $\alpha$ -film dosimetry using an exponential fit for the green channel, which showed promising results by reducing the uncertainty in dose estimation within 5%. Although the statistical analysis did not reveal significant differences between the 6-MV photon beam and the α $\alpha$ calibration curves, the dose-response curves exhibited the expected behavior. CONCLUSIONS: The developed MC user code simulated the experimental setup for α $\alpha$ -dosimetry using radiochromic film with acceptable uncertainty. Unlaminated EBT3 film is suitable for the dosimetry of α $\alpha$ -radiation at low doses and can be used in conjunction with other unlaminated GafChromic® films for quality assurance and research purposes.

2.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240238

ABSTRACT

Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local , Liquid Biopsy/methods , Lung Neoplasms/diagnosis , Biopsy/methods , Neoplastic Cells, Circulating/pathology
3.
Cancers (Basel) ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37190212

ABSTRACT

Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.

4.
Front Genet ; 13: 910221, 2022.
Article in English | MEDLINE | ID: mdl-35664333

ABSTRACT

Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.

5.
Front Genet ; 12: 664717, 2021.
Article in English | MEDLINE | ID: mdl-34659330

ABSTRACT

Inorganic arsenic is a well-established human carcinogen, able to induce genetic and epigenetic alterations. More than 200 million people worldwide are exposed to arsenic concentrations in drinking water exceeding the recommended WHO threshold (10µg/l). Additionally, chronic exposure to levels below this threshold is known to result in long-term health effects in humans. The arsenic-related health effects in humans are associated with its biotransformation process, whereby the resulting metabolites can induce molecular damage that accumulates over time. The effects derived from these alterations include genomic instability associated with oxidative damage, alteration of gene expression (including coding and non-coding RNAs), global and localized epigenetic reprogramming, and histone posttranslational modifications. These alterations directly affect molecular pathways involved in the onset and progression of many conditions that can arise even decades after the exposure occurs. Importantly, arsenic metabolites generated during its biotransformation can also pass through the placental barrier, resulting in fetal exposure to this carcinogen at similar levels to those of the mother. As such, more immediate effects of the arsenic-induced molecular damage can be observed as detrimental effects on fetal development, pregnancy, and birth outcomes. In this review, we focus on the genetic and epigenetic damage associated with exposure to low levels of arsenic, particularly those affecting early developmental stages. We also present how these alterations occurring during early life can impact the development of certain diseases in adult life.

6.
Sci Data ; 8(1): 166, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215751

ABSTRACT

Proper functioning of the human placenta is critical for maternal and fetal health. While microRNAs (miRNAs) are known to impact placental gene expression, the effects of other small non-coding RNAs (sncRNAs) on the placental transcriptome are not well-established, and are emerging topics in the study of environmental influence on fetal development and reproductive health. Here, we assembled a cohort of 30 placental chorionic villi samples of varying gestational ages (M ± SD = 23.7 ± 11.3 weeks) to delineate the human placental sncRNA transcriptome through small RNA sequence analysis. We observed expression of 1544 sncRNAs, which include 48 miRNAs previously unannotated in humans. Additionally, 18,003 miRNA variants (isomiRs) were identified from the 654 observed miRNA species. This characterization of the term and pre-term placental sncRNA transcriptomes provides data fundamental to future investigations of their regulatory functions in the human placenta, and the baseline expression pattern needed for identifying changes in response to environmental factors, or under disease conditions.


Subject(s)
Gene Expression Profiling , Placenta/metabolism , RNA, Small Untranslated/genetics , Transcriptome , Female , Gestational Age , Humans , Pregnancy
7.
Sci Rep ; 11(1): 14981, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294738

ABSTRACT

The placenta is vital to embryonic development and requires a finely-tuned pattern of gene expression, achieved in part by its unique epigenetic landscape. Piwi-interacting RNAs (piRNAs) are a class of small-non-coding RNA with established roles as epigenetic regulators of gene expression, largely via methylation of targeted DNA sequences. The expression of piRNAs have mainly been described in germ cells, but a fraction have been shown to retain expression in adult somatic tissues. To aid in understanding the contribution of these regulators in the placenta, we provide the first description of the piRNA transcriptome in human placentas. We find 297 piRNAs to be preferentially expressed in the human placenta, a subset of which are expressed at higher levels relative to testes samples. We also observed a large proportion of placental piRNAs to be expressed from a single locus, as distinct from canonical cluster locations associated with transposable element silencing. Finally, we find that 15 of the highest-expressed placental piRNAs maps to the DLK1-DIO3 locus, suggesting a link to placental biology. Our findings suggest that piRNAs could contribute to the molecular networks defining placental function in humans, and a biological impact of piRNA expression beyond germ cells.


Subject(s)
Calcium-Binding Proteins/genetics , Exome Sequencing/methods , Iodide Peroxidase/genetics , Membrane Proteins/genetics , Placenta/chemistry , RNA, Small Interfering/genetics , DNA Methylation , Female , Gene Expression Profiling , Gene Expression Regulation , Genomic Imprinting , High-Throughput Nucleotide Sequencing , Humans , Male , Pregnancy , Testis/chemistry
8.
Proc Natl Acad Sci U S A ; 117(33): 20139-20148, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32727899

ABSTRACT

Lung cancer causes more deaths annually than any other malignancy. A subset of non-small cell lung cancer (NSCLC) is driven by amplification and overexpression or activating mutation of the receptor tyrosine kinase (RTK) ERBB2 In some contexts, notably breast cancer, alternative splicing of ERBB2 causes skipping of exon 16, leading to the expression of an oncogenic ERBB2 isoform (ERBB2ΔEx16) that forms constitutively active homodimers. However, the broader implications of ERBB2 alternative splicing in human cancers have not been explored. Here, we have used genomic and transcriptomic analysis to identify elevated ERBB2ΔEx16 expression in a subset of NSCLC cases, as well as splicing site mutations facilitating exon 16 skipping and deletions of exon 16 in a subset of these lung tumors and in a number of other carcinomas. Supporting the potential of ERBB2ΔEx16 as a lung cancer driver, its expression transformed immortalized lung epithelial cells while a transgenic model featuring inducible ERBB2ΔEx16 specifically in the lung epithelium rapidly developed lung adenocarcinomas following transgene induction. Collectively, these observations indicate that ERBB2ΔEx16 is a lung cancer oncogene with potential clinical importance for a proportion of patients.


Subject(s)
Carcinoma/genetics , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Protein Isoforms/genetics , Receptor, ErbB-2/metabolism , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Rats , Receptor, ErbB-2/genetics , Tumor Microenvironment
10.
Noncoding RNA ; 5(2)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212997

ABSTRACT

Combining neo-adjuvant chemotherapy and surgery is part of multimodality treatment of malignant pleural mesothelioma (MPM), but not all patients benefit from this approach. In this exploratory analysis, we investigated the prognostic value of circulating miR-625-3p and lncRNA GAS5 after neo-adjuvant chemotherapy. 36 MPM patients from the SAKK 17/04 trial (NCT00334594), whose blood was available before and after chemotherapy were investigated. RNA was isolated from plasma and reverse transcribed into cDNA. miR-16-5p and ß-actin were used as a reference gene for miR-625-3p and GAS5, respectively. After exclusion of samples due to hemolysis or RNA degradation, paired plasma samples from 32 patients before and after chemotherapy were further analyzed. Quantification of miR-625-3p levels in all 64 samples revealed a bimodal distribution and cloning and sequencing of miR-625-3p qPCR product revealed the presence of miR-625-3p isomiRs. Relative change of the circulating miR-625-3p and GAS5 levels after chemotherapy showed that increased circulating miR-625-3p and decreased GAS5 was significantly associated with disease progression (Fisher's test, p = 0.0393). In addition, decreased levels of circulating GAS5 were significantly associated with shorter overall and progression-free survival. Our exploratory analysis revealed a potential value of circulating non-coding RNA for selection of patients likely to benefit from surgery after platinum-based adjuvant chemotherapy.

11.
J Hum Genet ; 64(5): 505-508, 2019 May.
Article in English | MEDLINE | ID: mdl-30842597

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy, wherein diagnostic limitations and lack of accurate prognostic factors are important clinical challenges. In this study, we report the discovery of 234 novel miRNAs in non-neoplastic thyroid and PTC samples, obtained from publicly available small RNA sequencing datasets (TCGA and GEO). These sequences were observed to display similar molecular features compared to currently annotated miRNAs. These potentially novel miRNAs presented tissue-specificity and largely decreased expression in PTC compared to non-neoplastic samples. We showed that the disrupted novel miRNAs have diagnostic and prognostic potential, and were associated with BRAF mutation, a frequent alteration related to more aggressive PTC. In conclusion, our results expand the miRNA repertoire in thyroid tissues and highlight the potential biological role and clinical utility of previously unannotated miRNAs.


Subject(s)
MicroRNAs , RNA, Neoplasm , Thyroid Cancer, Papillary , Thyroid Neoplasms , Female , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
12.
Front Genet ; 10: 138, 2019.
Article in English | MEDLINE | ID: mdl-30894871

ABSTRACT

Transcriptome sequencing has led to the widespread identification of long non-coding RNAs (lncRNAs). Subsequently, these genes have been shown to hold functional importance in human cellular biology, which can be exploited by tumors to drive the hallmarks of cancer. Due to the complex tertiary structure and unknown binding motifs of lncRNAs, there is a growing disparity between the number of lncRNAs identified and those that have been functionally characterized. As such, lncRNAs deregulated in cancer may represent critical components of cancer pathways that could serve as novel therapeutic intervention points. Pseudogenes are non-coding DNA sequences that are defunct relatives of their protein-coding parent genes but retain high sequence similarity. Interestingly, certain lncRNAs expressed from pseudogene loci have been shown to regulate the protein-coding parent genes of these pseudogenes in trans particularly because of this sequence complementarity. We hypothesize that this phenomenon occurs more broadly than previously realized, and that aberrant expression of lncRNAs overlapping pseudogene loci provides an alternative mechanism of cancer gene deregulation. Using RNA-sequencing data from two cohorts of lung adenocarcinoma, each paired with patient-matched non-malignant lung samples, we discovered 104 deregulated pseudogene-derived lncRNAs. Remarkably, many of these deregulated lncRNAs (i) were expressed from the loci of pseudogenes related to known cancer genes, (ii) had expression that significantly correlated with protein-coding parent gene expression, and (iii) had lncRNA protein-coding parent gene expression that was significantly associated with survival. Here, we uncover evidence to suggest the lncRNA-pseudogene-protein-coding gene axis as a prominent mechanism of cancer gene regulation in lung adenocarcinoma, and highlights the clinical utility of exploring the non-coding regions of the cancer transcriptome.

13.
J Thorac Oncol ; 14(4): 656-671, 2019 04.
Article in English | MEDLINE | ID: mdl-30578931

ABSTRACT

INTRODUCTION: Targeted therapies for lung adenocarcinoma (LUAD) have improved patient outcomes; however, drug resistance remains a major problem. One strategy to achieve durable response is to develop combination-based therapies that target both mutated oncogenes and key modifiers of oncogene-driven tumorigenesis. This is based on the premise that mutated oncogenes, although necessary, are not sufficient for malignant transformation. We aimed to uncover genetic alterations that cooperate with mutant EGFR during LUAD development. METHODS: We performed integrative genomic analyses, combining copy number, gene expression and mutational information for over 500 LUAD tumors. Co-immunoprecipitation and Western blot analysis were performed in LUAD cell lines to confirm candidate interactions while RNA interference and gene overexpression were used for in vitro and in vivo functional assessment. RESULTS: We identified frequent amplifications/deletions of chromosomal regions affecting the activity of genes specifically in the context of EGFR mutation, including amplification of the mutant EGFR allele and deletion of dual specificity phosphatase 4 (DUSP4), which have both previously been reported. In addition, we identified the novel amplification of a segment of chromosome arm 16p in mutant-EGFR tumors corresponding to increased expression of Golgi Associated, Gamma Adaptin Ear Containing, ARF Binding Protein 2 (GGA2), which functions in protein trafficking and sorting. We found that GGA2 interacts with EGFR, increases EGFR protein levels and modifies EGFR degradation after ligand stimulation. Furthermore, we show that overexpression of GGA2 enhances EGFR mediated transformation while GGA2 knockdown reduces the colony and tumor forming ability of EGFR mutant LUAD. CONCLUSIONS: These data suggest that overexpression of GGA2 in LUAD tumors results in the accumulation of EGFR protein and increased EGFR signaling, which helps drive tumor progression. Thus, GGA2 plays a cooperative role with EGFR during LUAD development and is a potential therapeutic target for combination-based strategies in LUAD.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Lung Neoplasms/genetics , 3T3 Cells , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Carcinogenesis , Cell Line, Tumor , Chromosome Deletion , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Amplification , Genomics , HEK293 Cells , HeLa Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mutation , Signal Transduction
14.
High Throughput ; 7(3)2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30060501

ABSTRACT

Malignant mesothelioma is an aggressive and lethal asbestos-related disease. Diagnosis of malignant mesothelioma is particularly challenging and is further complicated by the lack of disease subtype-specific markers. As a result, it is especially difficult to distinguish malignant mesothelioma from benign reactive mesothelial proliferations or reactive fibrosis. Additionally, mesothelioma diagnoses can be confounded by other anatomically related tumors that can invade the pleural or peritoneal cavities, collectively resulting in delayed diagnoses and greatly affecting patient management. High-throughput analyses have uncovered key genomic and epigenomic alterations driving malignant mesothelioma. These molecular features have the potential to better our understanding of malignant mesothelioma biology as well as to improve disease diagnosis and patient prognosis. Genomic approaches have been instrumental in identifying molecular events frequently occurring in mesothelioma. As such, we review the discoveries made using high-throughput technologies, including novel insights obtained from the analysis of the non-coding transcriptome, and the clinical potential of these genetic and epigenetic findings in mesothelioma. Furthermore, we aim to highlight the potential of these technologies in the future clinical applications of the novel molecular features in malignant mesothelioma.

15.
Int J Genomics ; 2018: 6972397, 2018.
Article in English | MEDLINE | ID: mdl-30057905

ABSTRACT

Despite advancements in therapeutic strategies, diagnostic and prognostic molecular markers of kidney cancer remain scarce, particularly in patients who do not harbour well-defined driver mutations. Recent evidence suggests that a large proportion of the human noncoding transcriptome has escaped detection in early genomic explorations. Here, we undertake a large-scale analysis of small RNA-sequencing data from both clear cell renal cell carcinoma (ccRCC) and nonmalignant samples to generate a robust set of miRNAs that remain unannotated in kidney tissues. We find that these novel kidney miRNAs are also expressed in renal cancer cell lines. Moreover, these sequences are differentially expressed between ccRCC and matched nonmalignant tissues, implicating their involvement in ccRCC biology and potential utility as tumour-specific markers of disease. Indeed, we find some of these miRNAs to be significantly associated with patient survival. Finally, target prediction and subsequent pathway analysis reveals that miRNAs previously unannotated in kidney tissues may target genes involved in ccRCC tumourigenesis and disease biology. Taken together, our results represent a new resource for the study of kidney cancer and underscore the need to characterize the unexplored areas of the transcriptome.

16.
Hum Genomics ; 12(1): 16, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587854

ABSTRACT

MicroRNAs (miRNAs) are crucial regulators of gene expression in normal development and cellular homeostasis. While miRNA repositories contain thousands of unique sequences, they primarily contain molecules that are conserved across several tissues, largely excluding lineage and tissue-specific miRNAs. By analyzing small non-coding RNA sequencing data for abundance and secondary RNA structure, we discovered 103 miRNA candidates previously undescribed in liver tissue. While expression of some of these unannotated sequences is restricted to non-malignant tissue, downregulation of most of the sequences was detected in liver tumors, indicating their importance in the maintenance of liver homeostasis. Furthermore, target prediction revealed the involvement of the unannotated miRNA candidates in fatty-acid metabolism and tissue regeneration, which are key pathways in liver biology. Here, we provide a comprehensive analysis of the undiscovered liver miRNA transcriptome, providing new resources for a deeper exploration of organ-specific biology and disease.


Subject(s)
Liver/metabolism , MicroRNAs/genetics , Transcriptome/genetics , Conserved Sequence/genetics , Gene Expression Profiling , Gene Expression Regulation/genetics , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/metabolism , Organ Specificity , Sequence Analysis, RNA
17.
Sci Rep ; 8(1): 152, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317756

ABSTRACT

Hypoxia promotes tumour aggressiveness and reduces patient survival. A spectrum of poor outcome among patients with hypoxic tumours suggests that additional factors modulate how tumours respond to hypoxia. PIWI-interacting RNAs (piRNAs) are small non-coding RNAs with a pivotal role in genomic stability and epigenetic regulation of gene expression. We reported that cancer type-specific piRNA signatures vary among patients. However, remarkably homogenous piRNA profiles are detected across patients with renal cell carcinoma, a cancer characterized by constitutive upregulation of hypoxia-related signaling induced by common mutation or loss of von Hippel-Lindau factor (VHL). By investigating >3000 piRNA transcriptomes in hypoxic and non-hypoxic tumors from seven organs, we discovered 40 hypoxia-regulated piRNAs and validated this in cells cultured under hypoxia. Moreover, a subset of these hypoxia-regulated piRNAs are regulated by VHL/HIF signaling in vitro. A hypoxia-regulated piRNA-based score (PiSco) was associated with poor RFS for hypoxic tumours, particularly Stage I lung adenocarcinomas, suggesting that hypoxia-regulated piRNA expression can predict tumour recurrence even in early-stage tumours and thus may be of clinical utility.


Subject(s)
Hypoxia/genetics , Neoplasms/genetics , Neoplasms/mortality , RNA, Untranslated/genetics , Biomarkers , Cell Line, Tumor , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Hypoxia/metabolism , Neoplasm Recurrence, Local , Neoplasms/metabolism , Neoplasms/pathology , Prognosis , RNA Interference , Reproducibility of Results , Research Design , Von Hippel-Lindau Tumor Suppressor Protein/genetics
18.
Environ Int ; 112: 183-197, 2018 03.
Article in English | MEDLINE | ID: mdl-29275244

ABSTRACT

More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.


Subject(s)
Arsenic/toxicity , Environmental Exposure/analysis , Water Pollutants, Chemical/toxicity , Animals , Genetic Predisposition to Disease , Humans
19.
Sci Data ; 4: 170157, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29064465

ABSTRACT

Only 3% of the transcribed human genome is translated into protein, and small non-coding RNAs from these untranslated regions have demonstrated critical roles in transcriptional and translational regulation of proteins. Here, we provide a resource that will facilitate cell line selection for gene expression studies involving sncRNAs in cancer research. As the most accessible and tractable models of tumours, cancer cell lines are widely used to study cancer development and progression. The NCI-60 panel of 59 cancer cell lines was curated to provide common models for drug screening in 9 tissue types; however, its prominence has extended to use in gene regulation, xenograft models, and beyond. Here, we present the complete small non-coding RNA (sncRNA) transcriptomes of these 59 cancer cell lines. Additionally, we examine the abundance and unique sequences of annotated microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs), and reveal novel unannotated microRNA sequences.


Subject(s)
Cell Line, Tumor , Neoplasms/genetics , Transcriptome , Gene Expression Regulation , Humans , RNA, Small Untranslated
20.
Oncotarget ; 8(31): 50489-50499, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28881577

ABSTRACT

Recent literature suggests that most widely used ovarian cancer (OVCA) cell models do not recapitulate the molecular features of clinical tumors. To address this limitation, we generated 18 cell lines and 3 corresponding patient-derived xenografts predominantly from high-grade serous carcinoma (HGSOC) peritoneal effusions. Comprehensive genomic characterization and comparison of each model to its parental tumor demonstrated a high degree of molecular similarity. Our characterization included whole exome-sequencing and copy number profiling for cell lines, xenografts, and matched non-malignant tissues, and DNA methylation, gene expression, and spectral karyotyping for a subset of specimens. Compared to the Cancer Genome Atlas (TCGA), our models more closely resembled HGSOC than any other tumor type, justifying their validity as OVCA models. Our meticulously characterized models provide a crucial resource for the OVCA research community that will advance translational findings and ultimately lead to clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...