Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
ACS Catal ; 14(9): 6470-6487, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38721381

ABSTRACT

Solar-assisted CO2 conversion into fuels and chemical products involves a range of technologies aimed at driving industrial decarbonization methods. In this work, we report on the development of a series of multifunctional metal-organic frameworks (MOFs) based on nitro- or amino-functionalized UiO-66(M) (M: Zr or Zr/Ti) supported RuOx NPs as photocatalysts, having different energy band level diagrams, for CO2 hydrogenation under simulated concentrated sunlight irradiation. RuOx(1 wt %; 2.2 ± 0.9 nm)@UiO-66(Zr/Ti)-NO2 was found to be a reusable photocatalyst, to be selective for CO2 methanation (5.03 mmol g-1 after 22 h;, apparent quantum yield at 350, 400, and 600 nm of 1.67, 0.25, and 0.01%, respectively), and to show about 3-6 times activity compared with previous investigations. The photocatalysts were characterized by advanced spectroscopic techniques like femto- and nanosecond transient absorption, spin electron resonance, and photoluminescence spectroscopies together with (photo)electrochemical measurements. The photocatalytic CO2 methanation mechanism was assessed by operando FTIR spectroscopy. The results indicate that the most active photocatalyst operates under a dual photochemical and photothermal mechanism. This investigation shows the potential of multifunctional MOFs as photocatalysts for solar-driven CO2 recycling.

2.
Polymers (Basel) ; 16(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794525

ABSTRACT

Traditional wound dressings have not been able to satisfy the needs of the regenerative medicine biomedical area. With the aim of improving tissue regeneration, nanofiber-based wound dressings fabricated by electrospinning (ES) processes have emerged as a powerful approach. Nowadays, nanofiber-based bioactive dressings are mainly developed with a combination of natural and synthetic polymers, such as polycaprolactone (PCL) and chitosan (CHI). Accordingly, herein, PCL/CHI nanofibers have been developed with varying PCL:CHI weight ratios (9:1, 8:2 and 7:3) or CHI viscosities (20, 100 and 600 mPa·s) using a novel alternating current ES (ACES) process. Such nanofibers were thoroughly characterized by determining physicochemical and nanomechanical properties, along with wettability, absorption capacity and hydrolytic plus enzymatic stability. Furthermore, PCL/CHI nanofiber biological safety was validated in terms of cytocompatibility and hemocompatibility (hemolysis < 2%), in addition to a notable antibacterial performance (bacterial reductions of 99.90% for S. aureus and 99.91% for P. aeruginosa). Lastly, the enhanced wound healing activity of PCL/CHI nanofibers was confirmed thanks to their ability to remarkably promote cell proliferation, which make them ideal candidates for long-term applications such as wound dressings.

3.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612388

ABSTRACT

Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.


Subject(s)
Nanopores , Coloring Agents , Motion , Upper Extremity
4.
Phys Chem Chem Phys ; 26(4): 3240-3252, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193884

ABSTRACT

We have studied the relaxation dynamics of a family of azaindole (AI) structural isomers, 4-, 5-, 6- and 7-AI, by steady-state and time-resolved methods (fs-transient absorption and fluorescence up-conversion), in solvents of different polarity. The measurements in aprotic solvents show distinctive fluorescence yields and excited state lifetimes among the isomers, which are tuned by the polarity of the medium. Guided by simple TD-DFT calculations and based on the behavior observed in the isolated species, it has been possible to address the influence of the environment polarity on the relaxation route. According to the obtained picture, the energy of the nπ* state, which is strongly dependent on the position of the pyridinic nitrogen, controls the rate of the internal conversion channel that accounts for the distinctive photophysical behavior of the isomers. On the other hand, preliminary measurements in protic media (methanol) show a very different photodynamical behavior, in which the anomalous measured fluorescent patterns are very likely the result of reactive channels (proton transfer) triggered by the electronic excitation.

5.
Nat Biotechnol ; 42(2): 265-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37142704

ABSTRACT

Antibiotic treatments have detrimental effects on the microbiome and lead to antibiotic resistance. To develop a phage therapy against a diverse range of clinically relevant Escherichia coli, we screened a library of 162 wild-type (WT) phages, identifying eight phages with broad coverage of E. coli, complementary binding to bacterial surface receptors, and the capability to stably carry inserted cargo. Selected phages were engineered with tail fibers and CRISPR-Cas machinery to specifically target E. coli. We show that engineered phages target bacteria in biofilms, reduce the emergence of phage-tolerant E. coli and out-compete their ancestral WT phages in coculture experiments. A combination of the four most complementary bacteriophages, called SNIPR001, is well tolerated in both mouse models and minipigs and reduces E. coli load in the mouse gut better than its constituent components separately. SNIPR001 is in clinical development to selectively kill E. coli, which may cause fatal infections in hematological cancer patients.


Subject(s)
Bacteriophages , Escherichia coli , Animals , Humans , Mice , Swine , Escherichia coli/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/genetics , Swine, Miniature , Anti-Bacterial Agents
6.
Phys Chem Chem Phys ; 26(2): 1225-1233, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38099816

ABSTRACT

The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.

7.
Reumatol. clín. (Barc.) ; 19(10): 533-548, Dic. 2023. tab
Article in Spanish | IBECS | ID: ibc-227358

ABSTRACT

Objetivo: Elaborar recomendaciones basadas en la evidencia disponible y el consenso de expertos, para la gestión del riesgo del tratamiento biológico y los inhibidores de las JAK en pacientes con artritis reumatoide. Métodos: Se identificaron preguntas clínicas de investigación relevantes para el objetivo del documento. Estas preguntas fueron reformuladas en formato PICO (paciente, intervención, comparación, outcome o desenlace) por un panel de expertos, seleccionados en base a su experiencia en el área. Se realizó una revisión sistemática de la evidencia, graduándose de acuerdo a los criterios GRADE (Grading of Recommendations Assessment, Development, and Evaluation). A continuación, se formularon las recomendaciones específicas. Resultados: Se propusieron por el panel de expertos 6preguntas PICO en base a su relevancia clínica y a la existencia de información reciente referentes al riesgo de aparición de infecciones graves, el riesgo de reactivación del virus de la hepatitisB, el riesgo de reactivación del virus varicela-zoster, el riesgo de aparición de cáncer de piel (melanoma y no melanoma) o hematológico, el riesgo de aparición de enfermedad tromboembólica y el riesgo de progresión del virus del papiloma humano. Se formularon un total de 29 recomendaciones, estructuradas por pregunta, basadas en la evidencia encontrada y el consenso de los expertos. Conclusiones: Se presentan las recomendaciones SER sobre la gestión del riesgo del tratamiento con terapias biológicas e inhibidores de las JAK en la artritis reumatoide.(AU)


Objective: To present recommendations based on the available evidence and the consensus of experts, for risk management of biological treatment and JAK inhibitors in patients with rheumatoid arthritis. Methods: Clinical research questions relevant to the purpose of the document were identified. These questions were reformulated in PICO format (patient, intervention, comparison, outcome) by a panel of experts, selected based on their experience in the area. A systematic review of the evidence was carried out, grading according to the GRADE criteria (Grading of Recommendations Assessment, Development, and Evaluation). Specific recommendations were then formulated. Results: Six PICO questions were proposed by the panel of experts based on their clinical relevance and the existence of recent information regarding the risk of occurrence of serious infections, the risk of reactivation of the hepatitisB virus, the risk of reactivation of the virus varicella-zoster, the risk of appearance of skin (melanoma and non-melanoma) or hematological cancer, the risk of appearance of thromboembolic disease and the risk of progression of the human papilloma virus. A total of 29 recommendations were formulated, structured by question, based on the evidence found and the consensus of the experts. Conclusions: The SER recommendations on risk management of treatment with biologic therapies and JAK inhibitors in rheumatoid arthritis are presented.(AU)


Subject(s)
Humans , Male , Female , Arthritis, Rheumatoid/drug therapy , Janus Kinase Inhibitors/adverse effects , Biological Treatment , Early Goal-Directed Therapy , Rheumatology , Rheumatic Diseases , Skin Neoplasms , Hepatitis B , Herpes Zoster/prevention & control , Arthritis, Rheumatoid/prevention & control , Hematologic Neoplasms
8.
Reumatol Clin (Engl Ed) ; 19(10): 533-548, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008602

ABSTRACT

OBJECTIVE: To present recommendations based on the available evidence and the consensus of experts, for risk management of biological treatment and JAK inhibitors in patients with rheumatoid arthritis. METHODS: Clinical research questions relevant to the purpose of the document were identified. These questions were reformulated in PICO format (patient, intervention, comparison, outcome or outcome) by a panel of experts, selected based on their experience in the area. A systematic review of the evidence was carried out, grading according to the GRADE criteria (Grading of Recommendations Assessment, Development, and Evaluation). Specific recommendations were then formulated. RESULTS: 6 PICO questions were proposed by the panel of experts based on their clinical relevance and the existence of recent information regarding the risk of occurrence of serious infections, the risk of reactivation of the hepatitis B virus, the risk of reactivation of the virus varicella-zoster, the risk of appearance of skin (melanoma and non-melanoma) or haematological cancer, the risk of appearance of thromboembolic disease and the risk of progression of the human papilloma virus. A total of 28 recommendations were formulated, structured by question, based on the evidence found and the consensus of the experts. CONCLUSIONS: The SER recommendations on risk management of treatment with biologic therapies and JAK inhibitors in rheumatoid arthritis are presented.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Rheumatology , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Biological Therapy , Janus Kinase Inhibitors/therapeutic use , Risk Management , Systematic Reviews as Topic , Practice Guidelines as Topic
9.
PEC Innov ; 2: 100169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37384150

ABSTRACT

Objective: To assess patient experiences using a Shared Decision-Making (SDM) Tool for fertility awareness-based methods (FABMs) of family planning. Methods: The study employed a prospective crossover design to evaluate impact of the SDM tool compared to usual practice when discussing FABMs with patients. Patients completed pre- and post-office visit surveys and an online survey six months later. The primary outcomes evaluated the effect of the SDM tool on patient satisfaction and FABM continuity of use rates. Results: There was no significant difference in likelihood of changing family planning methods immediately after the office visit; however, by six months a significantly larger proportion of patients had started or changed FABMs in the experimental group (52%, 34/66) compared to the control group (36%, 24/66) (p = 0.04). Significantly more patients who used the tool and changed their FABM after their visit reported increased satisfaction with their FABM compared to control (50% vs. 17%, p = 0.022). Conclusions: Use of the SDM tool increased persistent use of and satisfaction with chosen FABMs at six months. Innovations: The novel SDM tool can enhance patients' understanding and facilitate the selection of a more suitable method leading to increased satisfaction.

10.
Article in English | MEDLINE | ID: mdl-37391564

ABSTRACT

The development of bifunctional hybrid materials based on natural clays and layered double hydroxide (LDH) and their application on the simultaneous adsorption of Cd(II) and As(V) was investigated in this work. Two different synthesis routes, in situ and assembly, were employed to obtain the hybrid materials. Three types of natural clays, namely bentonite (B), halloysite (H), and sepiolite (S), were used in the study. These clays are characterized by a laminar, tubular, and fibrous structural arrangement, respectively. The physicochemical characterization results indicate that the hybrid materials were formed through interactions between the Al-OH and Si-OH groups present in the natural clays, and the Mg-OH and Al-OH groups present in the LDH for both synthesis routes. However, the "in situ" route yields a more homogenous material because the LDH formation is performed on the natural clay surface. The hybrid materials showed an anion and cation exchange capacity up to 200.7 meq/100 g and an isoelectric point near 7. The arrangement of natural clay has no impact on the properties of hybrid material but influences the adsorption capacity. The adsorption of Cd(II) onto hybrid materials was enhanced in comparison with natural clays, obtaining adsorption capacities of 80, 74, 65, and 30 mg/g for 15:1 (LDH:H)INSITU, 1:1 (LDH:S)INSITU, 1:1 (LDH:B)INSITU, and 1:1 (LDH:H)INSITU, respectively. The adsorption capacities of hybrid materials to adsorb As(V) were between 20 and 60 µg/g. The 15:1 (LDH:H)INSITU sample showed the best adsorption capacity being ten folds greater than halloysite and LDH. In all cases, the hybrid materials showed a synergistic effect for Cd(II) and As(V) adsorption. The adsorption study of Cd(II) onto hybrid materials showed that the primary adsorption mechanism is cation exchange between the interlayer cations in natural clay and Cd(II) in the aqueous solution. The adsorption of As(V) showed that the adsorption mechanism is attributed to anion exchange between CO23- in the interlayer space of LDH and H2ASO4- in the solution. The simultaneous adsorption of As (V) and Cd (II) shows that, during the As(V) adsorption, there is no competition by the adsorption sites. Still, the adsorption capacity towards Cd(II) was enhanced 1.2-folds. This study ultimately revealed that the arrangement of clay has a significant influence on the adsorption capacity of the hybrid material. This can be attributed to the similar morphology between the hybrid material and natural clays, as well as the important diffusion effects observed in the system.

11.
Mater Today Bio ; 20: 100680, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37304575

ABSTRACT

Magnetotactic bacteria are envisaged as potential theranostic agents. Their internal magnetic compass, chemical environment specificity and natural motility enable these microorganisms to behave as nanorobots, as they can be tracked and guided towards specific regions in the body and activated to generate a therapeutic response. Here we provide additional diagnostic functionalities to magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 while retaining their intrinsic capabilities. These additional functionalities are achieved by incorporating Tb or Gd in the bacteria by culturing them in Tb/Gd supplemented media. The incorporation of Tb provides luminescence properties, enabling potential applications of bacteria as biomarkers. The incorporation of Gd turns bacteria into dual contrast agents for magnetic resonance imaging, since Gd adds T1 contrast to the existing T2 contrast of unmodified bacteria. Given their potential clinical applications, the diagnostic ability of the modified MSR-1 has been successfully tested in vitro in two cell models, confirming their suitability as fluorescent markers (Tb-MSR-1) and dual contrast agents for MRI (Gd-MSR-1).

12.
Photochem Photobiol ; 99(3): 882-900, 2023.
Article in English | MEDLINE | ID: mdl-36916066

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are widely known for their versatile applications. One of the most extended is as drug delivery systems for the treatment of cancer and other diseases. This review compiles the most representative examples in the last years of functionalized MSNs as photosensitizer carriers for photodynamic therapy (PDT) against cancer. Several commercially available photosensitizers (PSs) demonstrated poor solubility in an aqueous medium and insufficient selectivity for cancer tissues. The tumor specificity of PSs is a key factor for enhancing the PDT effect and at the same time reducing side effects. The use of nanoparticles and particularly MSNs, in which PS is covalently anchored or physically embedded, can overcome these limitations. For that, PS-MSNs can be externally decorated with compounds of interest in order to act as an active target for certain cancer cells, demonstrating enhanced phototoxicity in vitro and in vivo. The objective of this review is to collect and compare different nanosystems based on PS-MSNs pointing out their advantages in PDT against diverse types of cancers.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Silicon Dioxide , Drug Delivery Systems , Neoplasms/drug therapy
13.
Polymers (Basel) ; 15(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36850248

ABSTRACT

Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interactions between gel microparticles. Herein, bulk macro-hydrogels based on thiolated-hyaluronic acid were produced by disulphide bond formation using oxygen as oxidant at physiological conditions and gelation kinetics were monitored. Three different thiol substitution degrees (SD%: 65%, 30% and 10%) were selected for hydrogel formation and fully characterized as to their stability in physiological medium and morphology. Then, extrusion fragmentation technique was applied to obtain hyaluronic acid microgels with dynamic disulphide bonds that were subsequently sterilized by autoclaving. The resulting granular hyaluronic hydrogels were able to form stable filaments when extruded through a syringe. Rheological characterization and cytotoxicity tests allowed to assess the potential of these materials as injectable biomaterials. The application of extrusion fragmentation for the formation of granular hyaluronic hydrogels and the understanding of the relation between the autoclaving processes and the resulting particle size and rheological properties should expand the development of injectable materials for biomedical applications.

14.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677602

ABSTRACT

This study is aimed at the analysis of the pyrolysis kinetics of Nanche stone BSC (Byrsonima crassifolia) as an agro-industrial waste using non-isothermal thermogravimetric experiments by determination of triplet kinetics; apparent activation energy, pre-exponential factor, and reaction model, as well as thermodynamic parameters to gather the required fundamental information for the design, construction, and operation of a pilot-scale reactor for the pyrolysis this lignocellulosic residue. Results indicate a biomass of low moisture and ash content and a high volatile matter content (≥70%), making BCS a potential candidate for obtaining various bioenergy products. Average apparent activation energies obtained from different methods (KAS, FWO and SK) were consistent in value (~123.8 kJ/mol). The pre-exponential factor from the Kissinger method ranged from 105 to 1014 min-1 for the highest pyrolytic activity stage, indicating a high-temperature reactive system. The thermodynamic parameters revealed a small difference between EA and ∆H (5.2 kJ/mol), which favors the pyrolysis reaction and indicates the feasibility of the energetic process. According to the analysis of the reaction models (master plot method), the pyrolytic degradation was dominated by a decreasing reaction order as a function of the degree of conversion. Moreover, BCS has a relatively high calorific value (14.9 MJ/kg) and a relatively low average apparent activation energy (122.7 kJ/mol) from the Starink method, which makes this biomass very suitable to be exploited for value-added energy production.

15.
Int J Biol Macromol ; 231: 123328, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36681215

ABSTRACT

Among biomedical community, great efforts have been realized to develop antibacterial coatings that avoid implant-associated infections. To date, conventional mono-functional antibacterial strategies have not been effective enough for successful long-term implantations. Consequently, researchers have recently focused their attention on novel bifunctional or multifunctional antibacterial coatings, in which two or more antibacterial mechanisms interact synergistically. Thus, in this work different chitosan-based (CHI) hydrogel coatings were created on Ti6Al4V surface using genipin (Ti-CHIGP) and polyethylene glycol (Ti-CHIPEG) crosslinking agents. Hydrogel coatings demonstrated an exceptional in vivo biocompatibility plus a remarkable ability to promote cell proliferation and differentiation. Lastly, hydrogel coatings demonstrated an outstanding bacteria-repelling (17-28 % of S. aureus and 33-43 % of E. coli repelled) and contact killing (186-222 % of S. aureus and 72-83 % of E. coli damaged) ability. Such bifunctional antibacterial activity could be further improved by the controlled release of drugs resulting in powerful multifunctional antibacterial coatings.


Subject(s)
Chitosan , Chitosan/pharmacology , Hydrogels/pharmacology , Staphylococcus aureus , Escherichia coli , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Titanium/pharmacology
16.
Carbohydr Polym ; 301(Pt B): 120366, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36446504

ABSTRACT

Today, the treatment of implant-associated infections with conventional mono-functional antibacterial coatings has not been effective enough for a prosperous long-term implantation. Therefore, biomedical industry is making considerable efforts on the development of novel antibacterial coatings with a combination of more than one antibacterial strategies that interact synergistically to reinforce each other. Therefore, in this work hyaluronic acid-based (HA) hydrogel coatings were created on the surface Ti6Al4V biomaterial with 1,4-butanediol diglycidyl ether (Ti-HABDDE) and divinyl sulfone (Ti-HADVS) crosslinking agents. Hydrogel coatings displayed an extraordinary in vivo biocompatibility, a remarkable ability to promote cell proliferation, differentiation and mineralization, and capability to sustainedly release drugs. Finally, HA-based hydrogel coatings demonstrated an outstanding multifunctional antibacterial activity: bacteria-repelling (51-55 % of S. aureus and 27-40 % of E. coli), bacteria-killing (82-119 % of S. aureus and 83-87 % of E. coli) and bactericide release killing (drug-loaded hydrogel coatings, R > 2).


Subject(s)
Biocompatible Materials , Hydrogels , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Escherichia coli , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Staphylococcus aureus
17.
SN Comput Sci ; 4(1): 14, 2023.
Article in English | MEDLINE | ID: mdl-36274815

ABSTRACT

Scientific advances, especially in the healthcare domain, can be accelerated by making data available for analysis. However, in traditional data analysis systems, data need to be moved to a central processing unit that performs analyses, which may be undesirable, e.g. due to privacy regulations in case these data contain personal information. This paper discusses the Personal Health Train (PHT) approach in which data processing is brought to the (personal health) data rather than the other way around, allowing (private) data accessed to be controlled, and to observe ethical and legal concerns. This paper introduces the PHT architecture and discusses the data staging solution that allows processing to be delegated to components spawned in a private cloud environment in case the (health) organisation hosting the data has limited resources to execute the required processing. This paper shows the feasibility and suitability of the solution with a relatively simple, yet representative, case study of data analysis of Covid-19 infections, which is performed by components that are created on demand and run in the Amazon Web Services platform. This paper also shows that the performance of our solution is acceptable, and that our solution is scalable. This paper demonstrates that the PHT approach enables data analysis with controlled access, preserving privacy and complying with regulations such as GDPR, while the solution is deployed in a private cloud environment.

18.
J Mater Chem B ; 11(1): 169-179, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36484323

ABSTRACT

The search for efficient heavy atom free photosensitizers (PSs) for photodynamic therapy (PDT) is a very active field. We describe herein a simple and easily accessible molecular design based on the attachment of an enamine group as an electron-donor moiety at the meso position of the BODIPY core with different alkylation patterns. The effect of the alkylation degree and solvent polarity on the photophysical properties in terms of splitting absorption bands, fluorescence efficiencies and singlet oxygen production is analyzed in depth experimentally using spectroscopic techniques, including femtosecond and nanosecond transient absorption (fs- and ns-TA) and using computational simulations based on time-dependent density functional theory. The correlation between the theoretical/experimental results permits the rationalization of the observed photophysical behavior exhibited by meso-enamine-BODIPY compounds and the determination of mechanistic details, which rule the population of the triplet state manifold. The potential applicability as a theragnostic agent for the most promising compound is demonstrated through in vitro assays in HeLa cells by analyzing the internalization, localization and phototoxic action.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , HeLa Cells , Halogens
19.
Article in English | MEDLINE | ID: mdl-36302136

ABSTRACT

Nanosystems that simultaneously contain fluorescent and magnetic modules can offer decisive advantages in the development of new biomedical approaches. A biomaterial that enables multimodal imaging and contains highly efficient nanoheaters together with an intrinsic temperature sensor would become an archetypical theranostic agent. In this work, we have designed a magneto-luminescent system based on Fe3O4 NPs with large heating power and thermosensitive rhodamine (Rh) fluorophores that exhibits the ability to self-monitor the hyperthermia degree. Three samples composed of highly homogeneous Fe3O4 NPs of ∼25 nm and different morphologies (cuboctahedrons, octahedrons, and irregular truncated-octahedrons) have been finely synthesized. These NPs have been thoroughly studied in order to choose the most efficient inorganic core for magnetic hyperthermia under clinically safe radiofrequency. Surface functionalization of selected Fe3O4 NPs has been carried out using fluorescent copolymers composed of PMAO, PEG and Rh. Copolymers with distinct PEG tail lengths (5-20 kDa) and different Rh percentages (5, 10, and 25%) have been synthesized, finding out that the copolymer with 20 kDa PEG and 10% Rh provides the best coating for an efficient fluorescence with minimal aggregation effects. The optimized Fe3O4@Rh system offers very suitable fluorescence thermosensitivity in the therapeutic hyperthermia range. Additionally, this sample presents good biocompatibility and displays an excellent heating capacity within the clinical safety limits of the AC field (≈ 1000 W/g at 142 kHz and 44 mT), which has been confirmed by both calorimetry and AC magnetometry. Thus, the current work opens up promising avenues toward next-generation medical technologies.

20.
Biomater Adv ; 139: 212992, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882141

ABSTRACT

Great efforts have been performed on the production of advanced biomaterials with the combination of self-healing and wound healing properties in implant/tissue engineering biomedical area. Inspired by this idea, chitosan (CHI) based hydrogels can be used to treat a less investigated class of harmful chronic wounds: ulcers or pressure ulcers. Thus, CHI was crosslinked with previously synthesized polyethylene glycol diacid (PEG-diacid) to obtain different CHI-PEG hydrogel formulations with high H-bonding tendency resulting in self-repair ability. Here presented results show biocompatible, antibacterial, anti-inflammatory, and self-healing CHI-PEG hydrogels with a promising future in the treatment of ulcerated wounds by a significant improvement in metabolic activity (94.51 ± 4.38 %), collagen and elastin quantities (2.12 ± 0.63 µg collagen and 4.97 ± 0.61 µg elastin per mg dermal tissue) and histological analysis. Furthermore, cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) antibiotics, and acetylsalicylic acid (ASA) anti-inflammatory agent were sustainedly released for enhancing antibacterial and anti-inflammatory activities of hydrogels.


Subject(s)
Chitosan , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Biocompatible Materials , Chitosan/pharmacology , Collagen/pharmacology , Elastin , Humans , Hydrogels , Ulcer , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...