Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(3): e0092823, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38385707

ABSTRACT

We present the complete genome sequence of Bradyrhizobium sp. 62B, a strain isolated from the root nodules of peanut plants that grow in central Argentina. The genome consists of 8.15 Mbp, distributed into a chromosome of 7.29 Mbp and a plasmid of 0.86 Mbp.

2.
BMC Genomics ; 24(1): 696, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986038

ABSTRACT

BACKGROUND: Isabel Island is a Mexican volcanic island primarily composed of basaltic stones. It features a maar known as Laguna Fragatas, which is classified as a meromictic thalassohaline lake. The constant deposition of guano in this maar results in increased levels of phosphorus, nitrogen, and carbon. The aim of this study was to utilize high-quality genomes from the genus Halomonas found in specialized databases as a reference for genome mining of moderately halophilic bacteria isolated from Laguna Fragatas. This research involved genomic comparisons employing phylogenetic, pangenomic, and metabolic-inference approaches. RESULTS: The Halomonas genus exhibited a large open pangenome, but several genes associated with salt metabolism and homeostatic regulation (ectABC and betABC), nitrogen intake through nitrate and nitrite transporters (nasA, and narGI), and phosphorus uptake (pstABCS) were shared among the Halomonas isolates. CONCLUSIONS: The isolated bacteria demonstrate consistent adaptation to high salt concentrations, and their nitrogen and phosphorus uptake mechanisms are highly optimized. This optimization is expected in an extremophile environment characterized by minimal disturbances or abrupt seasonal variations. The primary significance of this study lies in the dearth of genomic information available for this saline and low-disturbance environment. This makes it important for ecosystem conservation and enabling an exploration of its biotechnological potential. Additionally, the study presents the first two draft genomes of H. janggokensis.


Subject(s)
Halomonas , Halomonas/genetics , Halomonas/metabolism , Lakes/microbiology , Phylogeny , Ecosystem , Genomics , Nitrogen/metabolism , Phosphorus/metabolism , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics
3.
Microbiol Resour Announc ; 12(10): e0058123, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37772816

ABSTRACT

Here, we report the complete genome sequence of Mesorhizobium mediterraneum R31, a rhizobial strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of 7.25 Mb, distributed into four circular replicons: a chromosome of 6.72 Mbp and three plasmids of 0.29, 0.17, and 0.07 Mbp.

4.
Microbiol Resour Announc ; 11(11): e0077922, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36287006

ABSTRACT

We report the complete genome sequence of Mesorhizobium ciceri strain R30, a rhizobium strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of almost 7 Mb, distributed into two circular replicons: a chromosome of 6.49 Mb and a plasmid of 0.46 Mb.

5.
Microbiol Resour Announc ; 11(8): e0050522, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35852335

ABSTRACT

We present the complete genome sequence of Bradyrhizobium sp. strain C-145, one of the most widely used nitrogen-fixing rhizobacteria for inoculating peanut crops in Argentina. The genome consists of 9.53 Mbp in a single circular chromosome and was determined using a hybrid long- and short-read assembly approach.

6.
Nucleic Acids Res ; 50(11): 6084-6101, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35648479

ABSTRACT

Reverse transcriptases (RTs) are enzymes capable of synthesizing DNA using RNA as a template. Within the last few years, a burst of research has led to the discovery of novel prokaryotic RTs with diverse antiviral properties, such as DRTs (Defense-associated RTs), which belong to the so-called group of unknown RTs (UG) and are closely related to the Abortive Infection system (Abi) RTs. In this work, we performed a systematic analysis of UG and Abi RTs, increasing the number of UG/Abi members up to 42 highly diverse groups, most of which are predicted to be functionally associated with other gene(s) or domain(s). Based on this information, we classified these systems into three major classes. In addition, we reveal that most of these groups are associated with defense functions and/or mobile genetic elements, and demonstrate the antiphage role of four novel groups. Besides, we highlight the presence of one of these systems in novel families of human gut viruses infecting members of the Bacteroidetes and Firmicutes phyla. This work lays the foundation for a comprehensive and unified understanding of these highly diverse RTs with enormous biotechnological potential.


Subject(s)
RNA-Directed DNA Polymerase , Viruses , Humans , Prokaryotic Cells , RNA , RNA-Directed DNA Polymerase/genetics , Viruses/genetics
7.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Article in English | MEDLINE | ID: mdl-33983378

ABSTRACT

Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.


Subject(s)
Bacteriophages , Retroelements , Bacteriophages/genetics , Bacteriophages/metabolism , CRISPR-Cas Systems/genetics , Introns , Prokaryotic Cells/metabolism , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Retroelements/genetics
8.
Nucleic Acids Res ; 48(22): 12632-12647, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33275130

ABSTRACT

Bacterial retrons consist of a reverse transcriptase (RT) and a contiguous non-coding RNA (ncRNA) gene. One third of annotated retrons carry additional open reading frames (ORFs), the contribution and significance of which in retron biology remains to be determined. In this study we developed a computational pipeline for the systematic prediction of genes specifically associated with retron RTs based on a previously reported large dataset representative of the diversity of prokaryotic RTs. We found that retrons generally comprise a tripartite system composed of the ncRNA, the RT and an additional protein or RT-fused domain with diverse enzymatic functions. These retron systems are highly modular, and their components have coevolved to different extents. Based on the additional module, we classified retrons into 13 types, some of which include additional variants. Our findings provide a basis for future studies on the biological function of retrons and for expanding their biotechnological applications.


Subject(s)
DNA, Bacterial/genetics , RNA, Bacterial/genetics , RNA, Untranslated/genetics , RNA-Directed DNA Polymerase/genetics , Bacteria/genetics , DNA, Single-Stranded , Open Reading Frames/genetics
9.
Front Microbiol ; 11: 1424, 2020.
Article in English | MEDLINE | ID: mdl-32676064

ABSTRACT

The Queretaro semi-desert in central Mexico is the most southern extension of the Chihuahua desert. This semi-arid zone shelters a vast cactus diversity with many endemic species. Currently, two cacti species from this semi-desert namely, Echinocactus platyacanthus and Neobuxbaumia polylopha are under a threat to their survival. So far, there are no reports on the bacterial communities associated with these plants. In this study, we assessed the structure and diversity of the rhizospheric bacterial communities associated with Echinocactus platyacanthus and Neobuxbaumia polylopha growing in wild and cultivated conditions. Samples of E. platyacanthus were also approached with culture-based methods in search of isolates with plant growth promoting abilities. Metagenomic DNA was extracted from rhizospheric samples and used for Illumina sequencing of the 16S rRNA gene. α-diversity and amplicon sequence variant (ASV) richness were higher in both groups of E. platyacanthus samples. All samples accounted for 14 phyla, and the major 6 were common to all treatments. The dominant phyla in all four sample groups were Actinobacteria and Proteobacteria. Analysis at family and genus levels showed association patterns with the cultivated samples from both species grouping together, while the wild samples of each cactus species were grouping apart. High abundance values of Rubrobacteraceae (15.9-18.4%) were a characteristic feature of wild E. platyacanthus samples. In total, 2,227 ASVs were scored in all 12 rhizospheric samples where E. platyacanthus samples showed higher richness with 1,536 ASVs. Regarding the growing conditions, both groups of cultivated samples were also richer accounting for 743 and 615 ASVs for E. platyacanthus and N. polylopha, respectively. The isolates from E. platyacanthus rhizosphere were mainly assigned to Bacilli and Gammaproteobacteria. In total 35 strains were assayed for PGPR traits (IAA and siderophore production, phosphate solubilization, and fungal growth inhibition). Strains obtained from plants growing in the wild displayed better PGPR characteristics, stressing that naturally occurring wild plants are a source of bacteria with diverse metabolic activities, which can be very important players in the adaptation of cacti to their natural environments.

10.
Int Microbiol ; 23(3): 467-474, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31933014

ABSTRACT

Treatment of environmental samples under field conditions may require the application of chemical preservatives, although their use sometimes produces changes in the microbial communities. Sodium azide, a commonly used preservative, is known to differentially affect the growth of bacteria. Application of azide and darkness incubation to Isabel soda lake water samples induced changes in the structure of the bacterial community, as assessed by partial 16S rRNA gene pyrosequencing. Untreated water samples (WU) were dominated by gammaproteobacterial sequences accounting for 86%, while in the azide-treated (WA) samples, this group was reduced to 33% abundance, and cyanobacteria-related sequences became dominant with 53%. Shotgun sequencing and genome recruitment analyses pointed to Halomonas campanensis strain LS21 (genome size 4.07 Mbp) and Synechococcus sp. RS9917 (2.58 Mbp) as the higher recruiting genomes from the sequence reads of WA and WU environmental libraries, respectively, covering nearly the complete genomes. Combined treatment of water samples with sodium azide and darkness has proven effective on the selective enrichment of a cyanobacterial group. This approach may allow the complete (or almost-complete) genome sequencing of Cyanobacteria from metagenomic DNA of different origins, and thus increasing the number of the underrepresented cyanobacterial genomes in the databases.


Subject(s)
Cyanobacteria/isolation & purification , Metagenomics/methods , Microbiota , Sodium Azide/adverse effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cyanobacteria/genetics , DNA, Bacterial , Environmental Microbiology , Enzyme Inhibitors/adverse effects , Genome, Bacterial , Lakes/microbiology , Microbiota/genetics , Salinity
11.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31919182

ABSTRACT

We report here the complete genome sequence of the salt-tolerant Sinorhizobium meliloti strain AK21, isolated from nodules of Medicago sativa L. subsp. ambigua inhabiting the northern Aral Sea Region. This genome (7.36 Mb) consists of a chromosome and four accessory plasmids, two of which are the symbiotic megaplasmids pSymA and pSymB.

12.
Front Microbiol ; 10: 2160, 2019.
Article in English | MEDLINE | ID: mdl-31572350

ABSTRACT

Type VI CRISPR-Cas systems contain a single effector nuclease (Cas13) that exclusively targets single-stranded RNA. It remains unknown how these systems acquire spacers. It has been suggested that type VI systems with adaptation modules can acquire spacers from RNA bacteriophages, but sequence similarities suggest that spacers may provide immunity to DNA phages. We searched databases for Cas13 proteins with linked RTs. We identified two different type VI-A systems with adaptation modules including an RT-Cas1 fusion and Cas2 proteins. Phylogenetic reconstruction analyses revealed that these adaptation modules were recruited by different effector Cas13a proteins, possibly from RT-associated type III-D systems within the bacterial classes Alphaproteobacteria and Clostridia. These type VI-A systems are predicted to acquire spacers from RNA molecules, paving the way for future studies investigating their role in bacterial adaptive immunity and biotechnological applications.

13.
Nucleic Acids Res ; 47(19): 10202-10211, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31504832

ABSTRACT

The association of reverse transcriptases (RTs) with CRISPR-Cas system has recently attracted interest because the RT activity appears to facilitate the RT-dependent acquisition of spacers from RNA molecules. However, our understanding of this spacer acquisition process remains limited. We characterized the in vivo acquisition of spacers mediated by an RT-Cas1 fusion protein linked to a type III-D system from Vibrio vulnificus strain YJ016, and showed that the adaptation module, consisting of the RT-Cas1 fusion, two different Cas2 proteins (A and B) and one of the two CRISPR arrays, was completely functional in a heterologous host. We found that mutations of the active site of the RT domain significantly decreased the acquisition of new spacers and showed that this RT-Cas1-associated adaptation module was able to incorporate spacers from RNA molecules into the CRISPR array. We demonstrated that the two Cas2 proteins of the adaptation module were required for spacer acquisition. Furthermore, we found that several sequence-specific features were required for the acquisition and integration of spacers derived from any region of the genome, with no bias along the 5'and 3'ends of coding sequences. This study provides new insight into the RT-Cas1 fusion protein-mediated acquisition of spacers from RNA molecules.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Endodeoxyribonucleases/genetics , Genome, Bacterial/genetics , Plasmids/genetics , RNA/genetics , RNA-Directed DNA Polymerase , Vibrio vulnificus/genetics
14.
RNA Biol ; 16(10): 1486-1493, 2019 10.
Article in English | MEDLINE | ID: mdl-31276437

ABSTRACT

Prokaryotic genomes harbour a plethora of uncharacterized reverse transcriptases (RTs). RTs phylogenetically related to those encoded by group-II introns have been found associated with type III CRISPR-Cas systems, adjacent or fused at the C-terminus to Cas1. It is thought that these RTs may have a relevant function in the CRISPR immune response mediating spacer acquisition from RNA molecules. The origin and relationships of these RTs and the ways in which the various protein domains evolved remain matters of debate. We carried out a large survey of annotated RTs in databases (198,760 sequences) and constructed a large dataset of unique representative sequences (9,141). The combined phylogenetic reconstruction and identification of the RTs and their various protein domains in the vicinity of CRISPR adaptation and effector modules revealed three different origins for these RTs, consistent with their emergence on multiple occasions: a larger group that have evolved from group-II intron RTs, and two minor lineages that may have arisen more recently from Retron/retron-like sequences and Abi-P2 RTs, the latter associated with type I-C systems. We also identified a particular group of RTs associated with CRISPR-cas loci in clade 12, fused C-terminally to an archaeo-eukaryotic primase (AEP), a protein domain (AE-Prim_S_like) forming a particular family within the AEP proper clade. Together, these data provide new insight into the evolution of CRISPR-Cas/RT systems.


Subject(s)
CRISPR-Cas Systems , RNA-Directed DNA Polymerase/genetics , Chromosome Mapping , Genetic Linkage , Genetic Variation , Introns , Phylogeny , Prokaryotic Cells/metabolism , RNA-Directed DNA Polymerase/metabolism
15.
Front Microbiol ; 9: 1317, 2018.
Article in English | MEDLINE | ID: mdl-29963037

ABSTRACT

Reverse transcriptases (RTs) closely related to those encoded by group II introns but lacking the intron RNA structure have been found associated with type III clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems, a prokaryotic immune system against invading viruses and foreign genetic elements. Two models have been proposed to explain the origin and evolutionary relationships of these RTs: (i) the "single point of origin" model, according to which these RTs originated from a single acquisition event in bacterial, with the various protein domains (RT, RT-Cas1, and Cas6-RT-Cas1 fusions) corresponding to single points in evolution; and (ii) the "various origins" model, according to which, independent acquisition events in different evolutionary episodes led to these fusions. We tested these alternative hypotheses, by analyzing and integrating published datasets of RT sequences associated with CRISPR-Cas systems and inferring phylogenetic trees by maximum likelihood (ML) methods. The RTs studied could be grouped into 13 clades, mostly in bacteria, in which they probably evolved. The various clades appear to form three independent lineages in bacteria and a recent lineage in archaea. Our data show that the Cas6 domain was acquired twice, independently, through RT-Cas1 fusion, in the bacterial lineages. Taken together, there more evidence to support the "various origins" hypothesis.

16.
Front Microbiol ; 9: 627, 2018.
Article in English | MEDLINE | ID: mdl-29670598

ABSTRACT

Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.

17.
Sci Rep ; 7(1): 14593, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109410

ABSTRACT

Current research on the influence of environmental and physicochemical factors in shaping the soil bacterial structure has seldom been approached from a pedological perspective. We studied the bacterial communities of eight soils selected along a pedogenic gradient at the local scale in a Mediterranean calcareous mountain (Sierra de María, SE Spain). The results showed that the relative abundance of Acidobacteria, Canditate division WPS-1, and Armatimonadetes decreased whereas that of Actinobacteria, Bacteroidetes, and Proteobacteria increased from the less-developed soils (Leptosol) to more-developed soils (Luvisol). This bacterial distribution pattern was also positively correlated with soil-quality parameters such as organic C, water-stable aggregates, porosity, moisture, and acidity. In addition, at a lower taxonomic level, the abundance of Acidobacteria Gp4, Armatimonadetes_gp4, Solirubrobacter, Microvirga, Terrimonas, and Nocardioides paralleled soil development and quality. Therefore, our work indicates that the composition of bacterial populations changes with pedogenesis, which could be considered a factor influencing the communities according to the environmental and physicochemical conditions during the soil formation.


Subject(s)
Soil Microbiology , Soil/chemistry , Soil/classification , Altitude , Bacteria/genetics , Computational Biology , Plants , RNA, Bacterial , RNA, Ribosomal, 16S , Spain
18.
Sci Rep ; 7(1): 7089, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769116

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats) and associated proteins (Cas) act as adaptive immune systems in bacteria and archaea. Some CRISPR-Cas systems have been found to be associated with putative reverse transcriptases (RT), and an RT-Cas1 fusion associated with a type III-B system has been shown to acquire RNA spacers in vivo. Nevertheless, the origin and evolutionary relationships of these RTs and associated CRISPR-Cas systems remain largely unknown. We performed a comprehensive phylogenetic analysis of these RTs and associated Cas1 proteins, and classified their CRISPR-Cas modules. These systems were found predominantly in bacteria, and their presence in archaea may be due to a horizontal gene transfer event. These RTs cluster into 12 major clades essentially restricted to particular phyla, suggesting host-dependent functioning. The RTs and associated Cas1 proteins may have largely coevolved. They are, therefore, subject to the same selection pressures, which may have led to coadaptation within particular protein complexes. Furthermore, our results indicate that the association of an RT with a CRISPR-Cas system has occurred on multiple occasions during evolution.


Subject(s)
CRISPR-Cas Systems , RNA-Directed DNA Polymerase/genetics , Archaea/genetics , Bacteria/genetics , Genetic Loci , Genome , Phylogeny , Protein Domains/genetics , RNA-Directed DNA Polymerase/chemistry
19.
BMC Genomics ; 17: 556, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27495742

ABSTRACT

BACKGROUND: Population genetic analyses based on genome-wide sequencing data have been carried out for Sinorhizobium medicae and S. meliloti, two closely related bacterial species forming nitrogen-fixing symbioses with plants of the genus Medicago. However, genome coverage was low or the isolates had a broad geographic distribution, making it difficult to interpret the estimated diversity and to unravel the early events underlying population genetic variations and ecological differentiation. RESULTS: Here, to gain insight into the early genome level variation and diversification within S. meliloti populations, we first used Illumina paired-end reads technology to sequence a new clone of S. meliloti strain GR4, a highly competitive strain for alfalfa nodulation. The Illumina data and the GR4 genome sequence previously obtained with 454 technology were used to generate a high-quality reference genome sequence. We then used Illumina technology to sequence the genomes of 13 S. meliloti isolates representative of the genomic variation within the GR4-type population, obtained from a single field site with a high degree of coverage. The genome sequences obtained were analyzed to determine nucleotide diversity, divergence times, polymorphism and genomic variation. Similar low levels of nucleotide diversity were observed for the chromosome, pSymB and pSymA replicons. The isolates displayed other types of variation, such as indels, recombination events, genomic island excision and the transposition of mobile elements. CONCLUSIONS: Our results suggest that the GR4-type population has experienced a process of demographic expansion and behaves as a stable genotypic cluster of genome-wide similarity, with most of the genome following a clonal pattern of evolution. Although some of genetic variation detected within the GR4-type population is probably due to genetic drift, others might be important in diversification and environmental adaptation.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Genomics , Sinorhizobium meliloti/genetics , Bayes Theorem , Chromosome Mapping , DNA Transposable Elements , Genetic Variation , Genomic Islands , Genomics/methods , High-Throughput Nucleotide Sequencing , INDEL Mutation , Phylogeny , Polymorphism, Single Nucleotide , Recombination, Genetic , Sinorhizobium meliloti/classification
20.
Methods Mol Biol ; 1400: 21-32, 2016.
Article in English | MEDLINE | ID: mdl-26895044

ABSTRACT

Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Genomics , Introns , DNA Transposable Elements , DNA, Bacterial , Genomics/methods , Open Reading Frames , RNA Splicing , RNA, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...