Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Biomed Pharmacother ; 176: 116857, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850664

ABSTRACT

Metastatic colorectal cancer (mCRC) currently lacks reliable biomarkers for precision medicine, particularly for chemotherapy-based treatments. This study examines the behavior of 11 CXC chemokines in the blood of 104 mCRC patients undergoing first-line oxaliplatin-based treatment to pinpoint predictive and prognostic markers. Serum samples were collected before treatment, at response evaluation (EVAR), and at disease progression or last follow-up. Chemokines were assessed in all samples using a Luminex® custom panel. CXCL13 levels increased at EVAR in responders, while in non-responders it decreased. Increasing levels of CXCL13 at EVAR, independently correlated with improved progression-free survival (PFS) and overall survival (OS). Nanostring® analysis in primary tumor samples showed CXCL13 gene expression's positive correlation not only with gene profiles related to an immunogenic tumor microenvironment, increased B cells and T cells (mainly CD8+) but also with extended OS. In silico analysis using RNAseq data from liver metastases treated or not with neoadjuvant oxaliplatin-based combinations, and deconvolution analysis using the MCP-counter algorithm, confirmed CXCL13 gene expression's association with increased immune infiltration, improved OS, and Tertiary Lymphoid Structures (TLSs) gene signatures, especially in neoadjuvant-treated patients. CXCL13 analysis in serum from 36 oxaliplatin-treated patients from the METIMMOX study control arm, reported similar findings. In conclusion, the increase of CXCL13 levels in peripheral blood and its association with the formation of TLSs within the metastatic lesions, emerges as a potential biomarker indicative of the therapeutic efficacy in mCRC patients undergoing oxaliplatin-based treatment.


Subject(s)
Biomarkers, Tumor , Chemokine CXCL13 , Colorectal Neoplasms , Oxaliplatin , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Oxaliplatin/therapeutic use , Oxaliplatin/pharmacology , Male , Chemokine CXCL13/blood , Female , Aged , Middle Aged , Biomarkers, Tumor/blood , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Aged, 80 and over , Progression-Free Survival , Tumor Microenvironment , Prognosis
2.
Cells ; 12(6)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980184

ABSTRACT

Glioblastoma (GBM) is the most frequent primary malignant brain tumor and has a dismal prognosis. Unfortunately, despite the recent revolution of immune checkpoint inhibitors in many solid tumors, these have not shown a benefit in overall survival in GBM patients. Therefore, new potential treatment targets as well as diagnostic, prognostic, and/or predictive biomarkers are needed to improve outcomes in this population. The ß-galactoside binding protein Galectin-1 (Gal-1) is a protein with a wide range of pro-tumor functions such as proliferation, invasion, angiogenesis, and immune suppression. Here, we evaluated Gal-1 expression by immunohistochemistry in a homogenously treated cohort of GBM (the GLIOCAT project) and correlated its expression with clinical and molecular data. We observed that Gal-1 is a negative prognostic factor in GBM. Interestingly, we observed higher levels of Gal-1 expression in the mesenchymal/classical subtypes compared to the less aggressive proneural subtype. We also observed a Gal-1 expression correlation with immune suppressive signatures of CD4 T-cells and macrophages, as well as with several GBM established biomarkers, including SHC1, PD-L1, PAX2, MEOX2, YKL-40, TCIRG1, YWHAG, OLIG2, SOX2, Ki-67, and SOX11. Moreover, Gal-1 levels were significantly lower in grade 4 IDH-1 mutant astrocytomas, which have a better prognosis. Our results confirm the role of Gal-1 as a prognostic factor and also suggest its value as an immune-suppressive biomarker in GBM.


Subject(s)
Astrocytoma , Glioblastoma , Vacuolar Proton-Translocating ATPases , Humans , Galectin 1/genetics , Galectin 1/metabolism , Prognosis , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/metabolism , Astrocytoma/metabolism , Biomarkers , Vacuolar Proton-Translocating ATPases/metabolism , 14-3-3 Proteins/metabolism
3.
Cancers (Basel) ; 14(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36551619

ABSTRACT

Hypersialylation is a feature of pancreatic ductal adenocarcinoma (PDA) and it has been related to tumor malignancy and immune suppression. In this work, we have evaluated the potential of the sialyltransferase inhibitor, Ac53FaxNeu5Ac, to decrease tumor sialoglycans in PDA and to revert its malignant phenotype. Sialoglycans on PDA cells were evaluated by flow cytometry, and the functional impact of Ac53FaxNeu5Ac was assessed using E-selectin adhesion, migration, and invasion assays. PDA tumors were generated in syngeneic mice from KC cells and treated with Ac53FaxNeu5Ac to evaluate tumor growth, mice survival, and its impact on blocking sialic acid (SA) and on the tumor immune component. Ac53FaxNeu5Ac treatment on human PDA cells decreased α2,3-SA and sialyl-Lewisx, which resulted in a reduction in their E-selectin adhesion, and in their migratory and invasive capabilities. Subcutaneous murine tumors treated with Ac53FaxNeu5Ac reduced their volume, their SA expression, and modified their immune component, with an increase in CD8+ T-lymphocytes and NK cells. In conclusion, Ac53FaxNeu5Ac treatment weakened PDA cells' malignant phenotype, thereby reducing tumor growth while favoring anti-tumor immune surveillance. Altogether, these results show the positive impact of reducing SA expression by inhibiting cell sialyltransferases and open the way to use sialyltransferase inhibitors to target this dismal disease.

4.
Methods Mol Biol ; 2442: 685-711, 2022.
Article in English | MEDLINE | ID: mdl-35320553

ABSTRACT

Galectins have been linked to tumorigenesis since 1975, even before this family of proteins was given its name. Since then, hundreds of papers have analyzed the role of different galectins in cancer development and progression, deciphering their involvement in many different pathological events, from the regulation of cell cycle, to angiogenesis, metastasis, and immune attack evasion. Importantly, the tumor galectin profile is often altered in many cancers and aberrant levels of some of the members of this family have been considered in diagnosis and frequently correlated with patient prognosis and clinicopathological characteristics. In this chapter, we summarize most frequent techniques employed in cancer research to interrogate the role of galectins, using Gal-1 to illustrate one member of the family and pancreatic cancer as an experimental model. We will cover from techniques employed to detect their expression (tissue and blood samples) to the most frequent tools used to change expression levels and the cell line-based in vitro studies and murine preclinical models used to explore their role in tumor progression and/or clinical translation.


Subject(s)
Galectins , Pancreatic Neoplasms , Animals , Carcinogenesis , Cell Transformation, Neoplastic , Galectins/genetics , Galectins/metabolism , Humans , Mice , Neoplasms, Experimental/metabolism , Pancreatic Neoplasms/metabolism
5.
Cancers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35205638

ABSTRACT

Dyslipidemia, metabolic disorders and/or obesity are postulated as risk factors for pancreatic ductal adenocarcinoma (PDAC). The majority of patients with these metabolic alterations have low density lipoproteins (LDLs) with increased susceptibility to become aggregated in the extracellular matrix (ECM). LDL aggregation can be efficiently inhibited by low-density lipoprotein receptor-related protein 1 (LRP1)-based peptides. The objectives of this work were: (i) to determine if aggregated LDLs affect the intracellular cholesteryl ester (CE)/free cholesterol (FC) ratio and/or the tumor pancreatic cell proliferation, using sphingomyelinase-modified LDL particles (Aggregated LDL, AgLDL); and (ii) to test whether LRP1-based peptides, highly efficient against LDL aggregation, can interfere in these processes. For this, we exposed human pancreatic cancer cell lines (PANC-1, RWP-1 and Capan-1) to native (nLDL) or AgLDLs in the absence or presence of LRP1-based peptides (DP3) or irrelevant peptides (IP321). Results of thin-layer chromatography (TLC) following lipid extraction indicate that AgLDLs induce a higher intracellular CE/FC ratio than nLDL, and that DP3 but not IP321 counteracts this effect. AgLDLs also increase PANC-1 cell proliferation, which is inhibited by the DP3 peptide. Our results indicate that AgLDL-induced intracellular CE accumulation plays a crucial role in the proliferation of pancreatic tumor cell lines. Peptides with anti-LDL aggregation properties may thus exhibit anti-tumor effects.

6.
EBioMedicine ; 75: 103797, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34973624

ABSTRACT

BACKGROUND: Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. METHODS: AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. FINDINGS: AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. INTERPRETATION: sAXL appears as a biomarker for early detection of PDAC and PDAC-CP discrimination that could accelerate treatment and improve its dismal prognosis. FUNDING: This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis, Chronic , Animals , Biomarkers, Tumor , CA-19-9 Antigen , Carcinoma, Pancreatic Ductal/diagnosis , Diagnosis, Differential , Early Diagnosis , Humans , Intercellular Signaling Peptides and Proteins , Mice , Pancreatic Neoplasms/diagnosis , Pancreatitis, Chronic/diagnosis
7.
Biosensors (Basel) ; 11(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205541

ABSTRACT

A magnetic beads (MB)-involved amperometric immunosensor for the determination of ST2, a member of the IL1 receptor family, is reported in this work. The method utilizes a sandwich immunoassay and disposable screen-printed carbon electrodes (SPCEs). Magnetic immunoconjugates built on the surface of carboxylic acid-microsized magnetic particles (HOOC-MBs) were used to selectively capture ST2. A biotinylated secondary antibody further conjugated with a streptavidin peroxidase conjugate (Strep-HRP) was used to accomplish the sandwiching of the target protein. The immune platform exhibits great selectivity and a low limit of detection (39.6 pg mL-1) for ST2, allowing the determination of soluble ST2 (sST2) in plasma samples from healthy individuals and patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) in only 45 min once the immunoconjugates have been prepared. The good correlation of the obtained results with those provided by an ELISA kit performed using the same immunoreagents demonstrates the potential of the developed strategy for early diagnosis and/or prognosis of the fatal PDAC disease.


Subject(s)
Biosensing Techniques , Immunoassay , Neoplasms/diagnosis , Antibodies , Carbon , Electrochemical Techniques , Electrodes , Enzyme-Linked Immunosorbent Assay , Humans , Hydrogen Peroxide , Limit of Detection , Magnetics
8.
Int J Mol Sci ; 21(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872308

ABSTRACT

Aberrant sialylation is frequently found in pancreatic ductal adenocarcinoma (PDA). α2,3-Sialyltransferases (α2,3-STs) ST3GAL3 and ST3GAL4 are overexpressed in PDA tissues and are responsible for increased biosynthesis of sialyl-Lewis (sLe) antigens, which play an important role in metastasis. This study addresses the effect of α2,3-STs knockdown on the migratory and invasive phenotype of PDA cells, and on E-selectin-dependent adhesion. Characterization of the cell sialome, the α2,3-STs and fucosyltransferases involved in the biosynthesis of sLe antigens, using a panel of human PDA cells showed differences in the levels of sialylated determinants and α2,3-STs expression, reflecting their phenotypic heterogeneity. Knockdown of ST3GAL3 and ST3GAL4 in BxPC-3 and Capan-1 cells, which expressed moderate to high levels of sLe antigens and α2,3-STs, led to a significant reduction in sLex and in most cases in sLea, with slight increases in the α2,6-sialic acid content. Moreover, ST3GAL3 and ST3GAL4 downregulation resulted in a significant decrease in cell migration and invasion. Binding and rolling to E-selectin, which represent key steps in metastasis, were also markedly impaired in the α2,3-STs knockdown cells. Our results indicate that inhibition of ST3GAL3 and ST3GAL4 may be a novel strategy to block PDA metastasis, which is one of the reasons for its dismal prognosis.


Subject(s)
E-Selectin/metabolism , Pancreatic Neoplasms/metabolism , RNA, Small Interfering/pharmacology , Sialyltransferases/genetics , Cell Line, Tumor , Cell Movement , Fucosyltransferases/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Lewis Blood Group Antigens/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Sialyltransferases/antagonists & inhibitors
9.
Clin Cancer Res ; 26(23): 6086-6101, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32709716

ABSTRACT

Galectins are an endogenous family of ß-galactoside-binding proteins that play complex and multifaceted roles at various stages of cancer progression, including modulation of tumor cell proliferation, signaling, adhesion, migration, invasion, epithelial-mesenchymal transition, angiogenesis, and immune escape. Recently, galectins have been implicated as major therapeutic determinants that confer sensitivity or resistance to a wide range of anticancer modalities including chemotherapy, radiotherapy, targeted therapies, antiangiogenic therapies, and immunotherapies. Here, we present an integrated approach to the pleiotropic functions of galectins and discuss their emerging roles with respect to mechanisms of resistance or sensitivity to anticancer therapies. Taken together, these findings suggest that targeting galectins and/or their glycosylated ligands may help to overcome resistance and to increase the clinical efficacy of anticancer strategies.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Galectins/antagonists & inhibitors , Neoplasms/drug therapy , Animals , Galectins/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology
10.
Adv Exp Med Biol ; 1259: 17-38, 2020.
Article in English | MEDLINE | ID: mdl-32578169

ABSTRACT

In the last decades, the focus of cancer research has moved from epithelial cells to the tumor milieu, in an effort to better understand tumor development and progression, and with the important end goal of translating this knowledge into effective therapies. The galectin family of glycan-binding proteins displays important functions in cancer development and progression. Numerous groups have made outstanding contributions to deepen our knowledge about the role of galectins in the tumor-stroma crosstalk, defining them as key players in modulating interactions between tumor cells and the extracellular matrix, fibroblasts, endothelium, and the immune system. While several members of the family have been of particular interest until now, others are still considered as future exploding stars. This chapter provides an overview for galectin-1, the first identified and still one of the most well-studied galectins, and highlights the very important implications in its regulation of the tumor microenvironment in many different tumor types. Besides, a glimpse of the role of other galectins in the tumor milieu is also provided. Gaining a deeper understanding about the numerous roles of galectin-1 will not only help us to better understand other galectins but also is likely to result in the development of more effective cancer therapies.


Subject(s)
Galectin 1/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Animals , Humans , Signal Transduction
11.
Cells ; 9(3)2020 03 11.
Article in English | MEDLINE | ID: mdl-32168866

ABSTRACT

Galectins are a family of proteins that bind ß-galactose residues through a highly conserved carbohydrate recognition domain. They regulate several important biological functions, including cell proliferation, adhesion, migration, and invasion, and play critical roles during embryonic development and cell differentiation. In adults, different galectin members are expressed depending on the tissue type and can be altered during pathological processes. Numerous reports have shown the involvement of galectins in diseases, mostly inflammation and cancer. Here, we review the state-of-the-art of the role that different galectin family members play in pancreatic cancer. This tumor is predicted to become the second leading cause of cancer-related deaths in the next decade as there is still no effective treatment nor accurate diagnosis for it. We also discuss the possible translation of recent results about galectin expression and functions in pancreatic cancer into clinical interventions (i.e., diagnosis, prediction of prognosis and/or therapy) for this fatal disease.


Subject(s)
Galectins , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , Galectins/metabolism , Galectins/pharmacology , Humans , Immunosuppression Therapy/methods , Immunotherapy/methods , Pancreatic Neoplasms
12.
Nat Rev Urol ; 16(7): 433-445, 2019 07.
Article in English | MEDLINE | ID: mdl-31015643

ABSTRACT

Advanced prostate and bladder cancer are two outstanding unmet medical needs for urological oncologists. The high prevalence of these tumours, lack of effective biomarkers and limited effective treatment options highlight the importance of basic research in these diseases. Galectins are a family of ß-galactoside-binding proteins that are frequently altered (upregulated or downregulated) in a wide range of tumours and have roles in different stages of tumour development and progression, including immune evasion. In particular, altered expression levels of different members of the galectin family have been reported in prostate and bladder cancers, which, together with the aberrant glycosylation patterns found in tumour cells and the constituent cell types of the tumour microenvironment, can result in malignant transformation and tumour progression. Understanding the roles of galectin family proteins in the development and progression of prostate and bladder cancer could yield key insights to inform the clinical management of these diseases.


Subject(s)
Carcinogenesis , Galectins/physiology , Prostatic Neoplasms/etiology , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/pathology , Humans , Male
13.
Oncotarget ; 9(68): 32984-32996, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30250644

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is the most frequent type of pancreatic cancer and one of the deadliest diseases overall. New biomarkers are urgently needed to allow early diagnosis, one of the only factors that currently improves prognosis. Here we analyzed whether the detection of circulating galectin-1 (Gal-1), a soluble carbohydrate-binding protein overexpressed in PDA tissue samples, can be used as a biomarker for PDA. Gal-1 levels were determined by ELISA in plasma from healthy controls and patients diagnosed with PDA, using three independent cohorts. Patients with chronic pancreatitis (CP) were also included in the study to analyze the potential of Gal-1 to discriminate between cancer and inflammatory process. Plasma Gal-1 levels were significantly increased in patients with PDA as compared to controls in all three cohorts. Gal-1 sensitivity and specificity values were similar to that of the CA19-9 biomarker (the only FDA-approved blood test biomarker for PDA), and the combination of Gal-1 and CA19-9 significantly improved their individual discriminatory powers. Moreover, high levels of Gal-1 were associated with lower survival in patients with non-resected tumors. Collectively, our data indicate a strong potential of using circulating Gal-1 levels as a biomarker for detection and prognostics of patients with PDA.

14.
Proc Natl Acad Sci U S A ; 115(16): E3769-E3778, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29615514

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras-driven mouse model of PDA (Ela-KrasG12Vp53-/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , Galectin 1/physiology , Galectins/physiology , Molecular Targeted Therapy , Pancreatic Neoplasms/therapy , Animals , Carcinoma, Pancreatic Ductal/blood supply , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Cell Division/genetics , Cell Movement/genetics , Culture Media, Conditioned , Galectins/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Ontology , Heterografts , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Metastasis , Neovascularization, Pathologic , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/transplantation , Paracrine Communication , RNA, Small Interfering/genetics , Stromal Cells/metabolism , Tumor Microenvironment
15.
Cancers (Basel) ; 10(1)2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29301364

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much of the mechanisms behind poor drug performance, as it is the main source of the cytokines and chemokines that orchestrate rapid and silent tumor progression to allow tumor cells to be isolated into an extensive fibrotic reaction, which results in inefficient drug delivery. However, since immunotherapy was proclaimed as the breakthrough of the year in 2013, the focus on the stroma of pancreatic cancer has interestingly moved from activated fibroblasts to the immune compartment, trying to understand the immunosuppressive factors that play a part in the strong immune evasion that characterizes PDA. The PDA microenvironment is highly immunosuppressive and is basically composed of T regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressive cells (MDSCs), which block CD8⁺ T-cell duties in tumor recognition and clearance. Interestingly, preclinical data have highlighted the importance of this immune evasion as the source of resistance to single checkpoint immunotherapies and cancer vaccines and point at pathways that inhibit the immune attack as a key to solve the therapy puzzle. Here, we will discuss the molecular mechanisms involved in PDA immune escape as well as the state of the art of the PDA immunotherapy.

17.
Genome Res ; 27(1): 95-106, 2017 01.
Article in English | MEDLINE | ID: mdl-27821408

ABSTRACT

The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.


Subject(s)
DEAD-box RNA Helicases/genetics , Peptide Chain Initiation, Translational , Protein Biosynthesis , RNA/genetics , Saccharomyces cerevisiae Proteins/genetics , Bromovirus/genetics , Exons/genetics , Gene Expression Regulation/genetics , Humans , Nucleic Acid Conformation , Open Reading Frames/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics
18.
Oncotarget ; 7(30): 48265-48279, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27374084

ABSTRACT

Current treatments for pancreatic ductal adenocarcinoma (PDA) are ineffective, making this the 4th leading cause of cancer deaths. Sunitinib is a broad-spectrum inhibitor of tyrosine kinase receptors mostly known for its anti-angiogenic effects. We tested the therapeutic effects of sunitinib in pancreatic cancer using the Ela-myc transgenic mouse model. We showed that Ela-myc pancreatic tumors express PDGFR and VEGFR in blood vessels and epithelial cells, rendering these tumors sensitive to sunitinib by more than only its anti-angiogenic activity. However, sunitinib treatment of Ela-myc mice with either early or advanced tumor progression had no impact on either survival or tumor burden. Further histopathological characterization of these tumors did not reveal differences in necrosis, cell differentiation, angiogenesis, apoptosis or proliferation. In stark contrast, in vitro sunitinib treatment of Ela-myc- derived cell lines showed high sensitivity to the drug, with increased apoptosis and reduced proliferation. Correspondingly, subcutaneous tumors generated from these cell lines completely regressed in vivo after sunitinib treatments. These data point at the pancreatic tumor microenvironment as the most likely barrier preventing sunitinib treatment efficiency in vivo. Combined treatments with drugs that disrupt tumor fibrosis may enhance sunitinib therapeutic effectiveness in pancreatic cancer treatment.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Indoles/pharmacology , Pancreatic Neoplasms/drug therapy , Pyrroles/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/blood supply , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Mice , Neovascularization, Pathologic/drug therapy , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/pathology , Sunitinib
19.
Am J Pathol ; 186(2): 234-41, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26687988

ABSTRACT

The poly(ADP-ribose) polymerase (PARP) enzymes were initially characterized as sensors of DNA breaks but are now known to play key roles not only in the DNA damage response but also in regulating numerous molecular processes, such as gene transcription. Furthermore, these polymerases have emerged as key players in the pathogenesis of multiple diseases, providing promising therapeutic targets for pathologies such as cardiovascular disorders, neurodegenerative diseases, and cancer. In recent years, PARPs have been implicated in the pathogenesis of pancreatitis and pancreatic cancer, and PARP inhibition has been proposed as a valuable strategy for treating these two important gastrointestinal tract disorders. For instance, in preclinical mouse models, pancreatitis was significantly attenuated after genetic or pharmacological PARP inactivation, and several clinical trials have demonstrated promising responses to PARP inhibitors in pancreatic cancer patients. In this review, we summarize the current understanding of PARP functions in these two dismal pathologies and discuss the next steps necessary to determine whether PARP inhibitors will finally make the difference in treating pancreatitis and pancreatic cancer successfully.


Subject(s)
DNA Damage/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Animals , Cell Death/drug effects , Humans , Pancreatic Diseases/drug therapy , Pancreatic Diseases/metabolism
20.
J Pathol ; 234(2): 214-27, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24889936

ABSTRACT

Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light into the clinical use of Parp-1 inhibitors.


Subject(s)
Pancreatic Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Proto-Oncogene Proteins c-myc/metabolism , Adult , Aged , Aged, 80 and over , Animals , Apoptosis/genetics , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genes, ras/physiology , Humans , Male , Mice , Mice, Knockout , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1
SELECTION OF CITATIONS
SEARCH DETAIL
...