Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Blood Cancer Discov ; 5(3): 146-152, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38441243

ABSTRACT

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.


Subject(s)
Clinical Trials as Topic , Multiple Myeloma , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Humans , Clinical Trials as Topic/methods , Research Design , Quality of Life
2.
Nat Commun ; 14(1): 5825, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730678

ABSTRACT

Tumor recognition by T cells is essential for antitumor immunity. A comprehensive characterization of T cell diversity may be key to understanding the success of immunomodulatory drugs and failure of PD-1 blockade in tumors such as multiple myeloma (MM). Here, we use single-cell RNA and T cell receptor sequencing to characterize bone marrow T cells from healthy adults (n = 4) and patients with precursor (n = 8) and full-blown MM (n = 10). Large T cell clones from patients with MM expressed multiple immune checkpoints, suggesting a potentially dysfunctional phenotype. Dual targeting of PD-1 + LAG3 or PD-1 + TIGIT partially restored their function in mice with MM. We identify phenotypic hallmarks of large intratumoral T cell clones, and demonstrate that the CD27- and CD27+ T cell ratio, measured by flow cytometry, may serve as a surrogate of clonal T cell expansions and an independent prognostic factor in 543 patients with MM treated with lenalidomide-based treatment combinations.


Subject(s)
Multiple Myeloma , Adult , Humans , Animals , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , T-Lymphocytes , Programmed Cell Death 1 Receptor/genetics , Lenalidomide , Clone Cells
3.
J Physiol Biochem ; 79(2): 451-465, 2023 May.
Article in English | MEDLINE | ID: mdl-37204588

ABSTRACT

Obesity exacerbates aging-induced adipose tissue dysfunction. This study aimed to investigate the effects of long-term exercise on inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) of aged obese mice. Two-month-old female mice received a high-fat diet for 4 months. Then, six-month-old diet-induced obese animals were allocated to sedentarism (DIO) or to a long-term treadmill training (DIOEX) up to 18 months of age. In exercised mice, iWAT depot revealed more adaptability, with an increase in the expression of fatty acid oxidation genes (Cpt1a, Acox1), and an amelioration of the inflammatory status, with a favorable modulation of pro/antiinflammatory genes and lower macrophage infiltration. Additionally, iWAT of trained animals showed an increment in the expression of mitochondrial biogenesis (Pgc1a, Tfam, Nrf1), thermogenesis (Ucp1), and beige adipocytes genes (Cd137, Tbx1). In contrast, iBAT of aged obese mice was less responsive to exercise. Indeed, although an increase in functional brown adipocytes genes and proteins (Pgc1a, Prdm16 and UCP1) was observed, few changes were found on inflammation-related and fatty acid metabolism genes. The remodeling of iWAT and iBAT depots occurred along with an improvement in the HOMA index for insulin resistance and in glucose tolerance. In conclusion, long-term exercise effectively prevented the loss of iWAT and iBAT thermogenic properties during aging and obesity. In iWAT, the long-term exercise program also reduced the inflammatory status and stimulated a fat-oxidative gene profile. These exercise-induced adipose tissue adaptations could contribute to the beneficial effects on glucose homeostasis in aged obese mice.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Female , Mice , Animals , Adipose Tissue, Brown/metabolism , Mice, Obese , Adipose Tissue, White/metabolism , Obesity/therapy , Obesity/metabolism , Glucose/metabolism , Fatty Acids/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL
4.
J. physiol. biochem ; 79(2)may. 2023. graf
Article in English | IBECS | ID: ibc-222555

ABSTRACT

Obesity exacerbates aging-induced adipose tissue dysfunction. This study aimed to investigate the effects of long-term exercise on inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) of aged obese mice. Two-month-old female mice received a high-fat diet for 4 months. Then, six-month-old diet-induced obese animals were allocated to sedentarism (DIO) or to a long-term treadmill training (DIOEX) up to 18 months of age. In exercised mice, iWAT depot revealed more adaptability, with an increase in the expression of fatty acid oxidation genes (Cpt1a, Acox1), and an amelioration of the inflammatory status, with a favorable modulation of pro/antiinflammatory genes and lower macrophage infiltration. Additionally, iWAT of trained animals showed an increment in the expression of mitochondrial biogenesis (Pgc1a, Tfam, Nrf1), thermogenesis (Ucp1), and beige adipocytes genes (Cd137, Tbx1). In contrast, iBAT of aged obese mice was less responsive to exercise. Indeed, although an increase in functional brown adipocytes genes and proteins (Pgc1a, Prdm16 and UCP1) was observed, few changes were found on inflammation-related and fatty acid metabolism genes. The remodeling of iWAT and iBAT depots occurred along with an improvement in the HOMA index for insulin resistance and in glucose tolerance. In conclusion, long-term exercise effectively prevented the loss of iWAT and iBAT thermogenic properties during aging and obesity. In iWAT, the long-term exercise program also reduced the inflammatory status and stimulated a fat-oxidative gene profile. These exercise-induced adipose tissue adaptations could contribute to the beneficial effects on glucose homeostasis in aged obese mice. (AU)


Subject(s)
Animals , Mice , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/therapy , Thermogenesis/genetics
5.
Nat Med ; 29(3): 632-645, 2023 03.
Article in English | MEDLINE | ID: mdl-36928817

ABSTRACT

The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.


Subject(s)
Multiple Myeloma , Mice , Animals , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , CD8-Positive T-Lymphocytes , Immune Evasion , T-Lymphocytes, Regulatory , Immunotherapy/adverse effects , Tumor Microenvironment/genetics
6.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36854569

ABSTRACT

BACKGROUND: Approximately one-third of diffuse large B cell lymphoma (DLBCL) patients exhibit co-expression of MYC and BCL2 (double-expressor lymphoma, DEL) and have a dismal prognosis. Targeted inhibition of the anti-apoptotic protein BCL2 with venetoclax (ABT-199) has been approved in multiple B-cell malignancies and is currently being investigated in clinical trials for DLBCL. Whether BCL2 anti-apoptotic function represents a multifaceted vulnerability for DEL-DLBCL, affecting both lymphoma B cells and T cells within the tumor microenvironment, remains to be elucidated. METHODS: Here, we present novel genetically engineered mice that preclinically recapitulate DEL-DLBCL lymphomagenesis, and evaluate their sensitivity ex vivo and in vivo to the promising combination of venetoclax with anti-CD20-based standard immunotherapy. RESULTS: Venetoclax treatment demonstrated specific killing of MYC+/BCL2+ lymphoma cells by licensing their intrinsically primed apoptosis, and showed previously unrecognized immunomodulatory activity by specifically enriching antigen-activated effector CD8 T cells infiltrating the tumors. Whereas DEL-DLBCL mice were refractory to venetoclax alone, inhibition of BCL2 significantly extended overall survival of mice that were simultaneously treated with a murine surrogate for anti-CD20 rituximab. CONCLUSIONS: These results suggest that the combination of anti-CD20-based immunotherapy and BCL2 inhibition leads to cooperative immunomodulatory effects and improved preclinical responses, which may offer promising therapeutic opportunities for DEL-DLBCL patients.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Immunotherapy , Lymphoma, Large B-Cell, Diffuse , Animals , Mice , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Disease Models, Animal , Immunotherapy/methods , Lymphoma, Large B-Cell, Diffuse/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Tumor Microenvironment , Proto-Oncogene Proteins c-myc
7.
Blood ; 141(21): 2615-2628, 2023 05 25.
Article in English | MEDLINE | ID: mdl-36735903

ABSTRACT

Recent investigations have improved our understanding of the molecular aberrations supporting Waldenström macroglobulinemia (WM) biology; however, whether the immune microenvironment contributes to WM pathogenesis remains unanswered. First, we showed how a transgenic murine model of human-like lymphoplasmacytic lymphoma/WM exhibits an increased number of regulatory T cells (Tregs) relative to control mice. These findings were translated into the WM clinical setting, in which the transcriptomic profiling of Tregs derived from patients with WM unveiled a peculiar WM-devoted messenger RNA signature, with significant enrichment for genes related to nuclear factor κB-mediated tumor necrosis factor α signaling, MAPK, and PI3K/AKT, which was paralleled by a different Treg functional phenotype. We demonstrated significantly higher Treg induction, expansion, and proliferation triggered by WM cells, compared with their normal cellular counterpart; with a more profound effect within the context of CXCR4C1013G-mutated WM cells. By investigating the B-cell-to-T-cell cross talk at single-cell level, we identified the CD40/CD40-ligand as a potentially relevant axis that supports WM cell-Tregs interaction. Our findings demonstrate the existence of a Treg-mediated immunosuppressive phenotype in WM, which can be therapeutically reversed by blocking the CD40L/CD40 axis to inhibit WM cell growth.


Subject(s)
Lymphoma, B-Cell , Waldenstrom Macroglobulinemia , Humans , Animals , Mice , Waldenstrom Macroglobulinemia/pathology , CD40 Ligand/genetics , Phosphatidylinositol 3-Kinases , Ligands , Signal Transduction , Lymphoma, B-Cell/complications , Tumor Microenvironment
8.
Blood ; 141(9): 1047-1059, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36455198

ABSTRACT

Venetoclax combination therapies are becoming the standard of care in acute myeloid leukemia (AML). However, the therapeutic benefit of these drugs in older/unfit patients is limited to only a few months, highlighting the need for more effective therapies. Protein phosphatase 2A (PP2A) is a tumor suppressor phosphatase with pleiotropic functions that becomes inactivated in ∼70% of AML cases. PP2A promotes cancer cell death by modulating the phosphorylation state in a variety of proteins along the mitochondrial apoptotic pathway. We therefore hypothesized that pharmacological PP2A reactivation could increase BCL2 dependency in AML cells and, thus, potentiate venetoclax-induced cell death. Here, by using 3 structurally distinct PP2A-activating drugs, we show that PP2A reactivation synergistically enhances venetoclax activity in AML cell lines, primary cells, and xenograft models. Through the use of gene editing tools and pharmacological approaches, we demonstrate that the observed therapeutic synergy relies on PP2A complexes containing the B56α regulatory subunit, of which expression dictates response to the combination therapy. Mechanistically, PP2A reactivation enhances venetoclax-driven apoptosis through simultaneous inhibition of antiapoptotic BCL2 and extracellular signal-regulated kinase signaling, with the latter decreasing MCL1 protein stability. Finally, PP2A targeting increases the efficacy of the clinically approved venetoclax and azacitidine combination in vitro, in primary cells, and in an AML patient-derived xenograft model. These preclinical results provide a scientific rationale for testing PP2A-activating drugs with venetoclax combinations in AML.


Subject(s)
Leukemia, Myeloid, Acute , Protein Phosphatase 2 , Humans , Aged , Myeloid Cell Leukemia Sequence 1 Protein , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2 , Leukemia, Myeloid, Acute/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Apoptosis
9.
J Nutr Biochem ; 111: 109153, 2023 01.
Article in English | MEDLINE | ID: mdl-36150680

ABSTRACT

This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.


Subject(s)
Docosahexaenoic Acids , Obesity , Female , Mice , Animals , Mice, Obese , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Obesity/metabolism , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects , Subcutaneous Fat/metabolism , Dietary Supplements , Adipose Tissue/metabolism
10.
Sci Adv ; 8(3): eabl4644, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35044826

ABSTRACT

Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Waldenstrom Macroglobulinemia , Aged , Animals , Humans , Lymphoma, B-Cell/metabolism , Mice , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/genetics , Waldenstrom Macroglobulinemia/pathology
11.
Blood ; 139(3): 384-398, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34232979

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. The NF-κB transcription factor family is activated by 2 main pathways, the canonical and the alternative NF-κB activation pathway, with different functions. The alternative NF-κB pathway leads to activation of the transcriptionally active RelB NF-κB subunit. Alternative NF-κB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their activated B-cell-like or germinal center B-cell-like subtype. RelB activity defines a new subset of patients with DLBCL and a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for activated B-cell-like tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-κB, thus indicating that current genetic tools to evaluate NF-κB activity in DLBCL do not provide information on the alternative NF-κB activation. Furthermore, the newly defined RelB-positive subgroup of patients with DLBCL exhibits a dismal outcome after immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA damage-induced apoptosis in response to doxorubicin, a genotoxic agent used in the front-line treatment of DLBCL. We also show that RelB positivity is associated with high expression of cellular inhibitor of apoptosis protein 2 (cIAP2). Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of patients with DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Transcription Factor RelB/metabolism , Apoptosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , NF-kappa B/genetics , Transcription Factor RelB/genetics , Transcriptional Activation
12.
Cancer Discov ; 11(5): 1268-1285, 2021 05.
Article in English | MEDLINE | ID: mdl-33355179

ABSTRACT

For millions of years, endogenous retroelements have remained transcriptionally silent within mammalian genomes by epigenetic mechanisms. Modern anticancer therapies targeting the epigenetic machinery awaken retroelement expression, inducing antiviral responses that eliminate tumors through mechanisms not completely understood. Here, we find that massive binding of epigenetically activated retroelements by RIG-I and MDA5 viral sensors promotes ATP hydrolysis and depletes intracellular energy, driving tumor killing independently of immune signaling. Energy depletion boosts compensatory ATP production by switching glycolysis to mitochondrial oxidative phosphorylation, thereby reversing the Warburg effect. However, hyperfunctional succinate dehydrogenase in mitochondrial electron transport chain generates excessive oxidative stress that unleashes RIP1-mediated necroptosis. To maintain ATP generation, hyperactive mitochondrial membrane blocks intrinsic apoptosis by increasing BCL2 dependency. Accordingly, drugs targeting BCL2 family proteins and epigenetic inhibitors yield synergistic responses in multiple cancer types. Thus, epigenetic therapy kills cancer cells by rewiring mitochondrial metabolism upon retroelement activation, which primes mitochondria to apoptosis by BH3-mimetics. SIGNIFICANCE: The state of viral mimicry induced by epigenetic therapies in cancer cells remodels mitochondrial metabolism and drives caspase-independent tumor cell death, which sensitizes to BCL2 inhibitor drugs. This novel mechanism underlies clinical efficacy of hypomethylating agents and venetoclax in acute myeloid leukemia, suggesting similar combination therapies for other incurable cancers.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Antineoplastic Agents/pharmacology , Epigenesis, Genetic/drug effects , Mitochondria/drug effects , Neoplasms/drug therapy , Apoptosis/drug effects , Cell Line, Tumor , Humans
13.
Blood ; 137(1): 49-60, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32693406

ABSTRACT

Patients with multiple myeloma (MM) carrying standard- or high-risk cytogenetic abnormalities (CAs) achieve similar complete response (CR) rates, but the later have inferior progression-free survival (PFS). This questions the legitimacy of CR as a treatment endpoint and represents a biological conundrum regarding the nature of tumor reservoirs that persist after therapy in high-risk MM. We used next-generation flow (NGF) cytometry to evaluate measurable residual disease (MRD) in MM patients with standard- vs high-risk CAs (n = 300 and 90, respectively) enrolled in the PETHEMA/GEM2012MENOS65 trial, and to identify mechanisms that determine MRD resistance in both patient subgroups (n = 40). The 36-month PFS rates were higher than 90% in patients with standard- or high-risk CAs achieving undetectable MRD. Persistent MRD resulted in a median PFS of âˆ¼3 and 2 years in patients with standard- and high-risk CAs, respectively. Further use of NGF to isolate MRD, followed by whole-exome sequencing of paired diagnostic and MRD tumor cells, revealed greater clonal selection in patients with standard-risk CAs, higher genomic instability with acquisition of new mutations in high-risk MM, and no unifying genetic event driving MRD resistance. Conversely, RNA sequencing of diagnostic and MRD tumor cells uncovered the selection of MRD clones with singular transcriptional programs and reactive oxygen species-mediated MRD resistance in high-risk MM. Our study supports undetectable MRD as a treatment endpoint for patients with MM who have high-risk CAs and proposes characterizing MRD clones to understand and overcome MRD resistance. This trial is registered at www.clinicaltrials.gov as #NCT01916252.


Subject(s)
Drug Resistance, Neoplasm/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm, Residual/pathology , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Boron Compounds/therapeutic use , Bortezomib/therapeutic use , Chromosome Aberrations , Dexamethasone/therapeutic use , Female , Flow Cytometry , Glycine/analogs & derivatives , Glycine/therapeutic use , Humans , Lenalidomide/therapeutic use , Male , Middle Aged , Progression-Free Survival , Treatment Outcome
14.
Leukemia ; 34(10): 2722-2735, 2020 10.
Article in English | MEDLINE | ID: mdl-32576963

ABSTRACT

Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex are frequently found in different human cancers. While the tumor suppressor function of this complex is widely established in solid tumors, its role in hematologic malignancies is largely unknown. Recurrent point mutations in BCL7A gene, encoding a subunit of the SWI/SNF complex, have been reported in diffuse large B-cell lymphoma (DLBCL), but their functional impact remains to be elucidated. Here we show that BCL7A often undergoes biallelic inactivation, including a previously unnoticed mutational hotspot in the splice donor site of intron one. The splice site mutations render a truncated BCL7A protein, lacking a portion of the amino-terminal domain. Moreover, restoration of wild-type BCL7A expression elicits a tumor suppressor-like phenotype in vitro and in vivo. In contrast, splice site mutations block the tumor suppressor function of BCL7A by preventing its binding to the SWI/SNF complex. We also show that BCL7A restoration induces transcriptomic changes in genes involved in B-cell activation. In addition, we report that SWI/SNF complex subunits harbor mutations in more than half of patients with germinal center B-cell (GCB)-DLBCL. Overall, this work demonstrates the tumor suppressor function of BCL7A in DLBCL, and highlights that the SWI/SNF complex plays a relevant role in DLBCL pathogenesis.


Subject(s)
Genes, Tumor Suppressor , Lymphoma, Large B-Cell, Diffuse/genetics , Microfilament Proteins/genetics , Mutation , Oncogene Proteins/genetics , Protein Interaction Domains and Motifs/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Chromatography, Liquid , Chromosomal Proteins, Non-Histone/metabolism , DNA Mutational Analysis , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lymphocyte Activation/immunology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/therapy , Mice , Microfilament Proteins/chemistry , Molecular Imaging , Multiprotein Complexes , Oncogene Proteins/chemistry , Protein Binding , Tandem Mass Spectrometry , Xenograft Model Antitumor Assays
15.
Blood Adv ; 4(5): 893-905, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32150608

ABSTRACT

Intraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF), and resting (RF) cellular fractions. Here, we found that these intraclonal circulating fractions share persistent DNA methylation signatures largely associated with the mutation status of the immunoglobulin heavy chain locus (IGHV) and their origins from distinct stages of differentiation of antigen-experienced B cells. Increased leukemic birth rate, however, showed a very limited impact on DNA methylation of circulating CLL fractions independent of IGHV mutation status. Additionally, DNA methylation heterogeneity increased as leukemic cells advanced from PF to RF in the peripheral blood. This frequently co-occurred with heterochromatin hypomethylation and hypermethylation of Polycomb-repressed regions in the PF, suggesting accumulation of longevity-associated epigenetic features in recently born cells. On the other hand, transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Several of these differentially expressed genes showed unique associations with clinical outcome not evident in the bulk clone, supporting the pathological and therapeutic relevance of studying intraclonal CLL fractions. We conclude that independent methylation and transcriptional landscapes reflect both preexisting cell-of-origin fingerprints and more recently acquired hallmarks associated with the life cycle of circulating CLL cells.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , B-Lymphocytes , DNA Methylation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics
17.
Nat Commun ; 10(1): 2235, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138805

ABSTRACT

Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032).


Subject(s)
Adenoviridae , Brain Stem Neoplasms/therapy , Glioma/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses , Animals , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Brain Stem Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Computer Simulation , Disease Models, Animal , Glioma/pathology , Humans , In Vitro Techniques , Mice , Neoplasm Grading , Xenograft Model Antitumor Assays
18.
Blood ; 133(22): 2401-2412, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30975638

ABSTRACT

Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.


Subject(s)
B-Lymphocytes/immunology , B7-H1 Antigen/immunology , Gene Expression Regulation, Neoplastic , Lymphocyte Activation , Lymphoma, Large B-Cell, Diffuse/immunology , Programmed Cell Death 1 Receptor/immunology , Tumor Escape , Tumor Suppressor Protein p53/immunology , Animals , B-Lymphocytes/pathology , B7-H1 Antigen/genetics , Female , Humans , Immunotherapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Mice , Mice, Transgenic , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Suppressor Protein p53/genetics
20.
J Med Chem ; 61(15): 6518-6545, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-29953809

ABSTRACT

Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing. In vitro treatment of different hematological neoplasia cell lines led to the identification of molecules with clear antiproliferative efficacies (GI50 values in the nanomolar range). On the basis of epigenetic functional cellular responses (levels of lysine 9 methylation and 5-methylcytosine), an acceptable therapeutic window (around 1 log unit) and a suitable pharmacokinetic profile, 12 was selected for in vivo proof-of-concept ( Nat. Commun. 2017 , 8 , 15424 ). Herein, 12 achieved a significant in vivo efficacy: 70% overall tumor growth inhibition of a human acute myeloid leukemia (AML) xenograft in a mouse model.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Modification Methylases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , DNA Modification Methylases/chemistry , DNA Modification Methylases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Molecular Docking Simulation , Protein Conformation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...