Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(4): 5592-5606, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439281

ABSTRACT

In practice, Airy beams can only be reproduced in an approximate manner, with a limited spatial extension and hence a finite energy content. To this end, different procedures have been reported in the literature, based on a convenient tuning of the transmission properties of aperture functions. In order to investigate the effects generated by the truncation and hence the propagation properties displayed by the designed beams, here we resort to a new perspective based on a trajectory methodology, complementary to the density plots more commonly used to study the intensity distribution propagation. We consider three different aperture functions, which are convoluted with an ideal Airy beam. As it is shown, the corresponding trajectories reveals a deeper physical insight about the propagation dynamics exhibited by the beams analyzed due to their direct connection with the local phase variations undergone by the beams, which is in contrast with the global information provided by the usual standard tools. Furthermore, we introduce a new parameter, namely, the escape rate, which allow us to perform piecewise analyses of the intensity distribution without producing any change on it, e.g., determining unambiguously how much energy flux contributes to the leading maximum at each stage of the propagation, or for how long self-accelerating transverse propagation survives. The analysis presented in this work thus provides an insight into the behavior of finite-energy Airy beams, and therefore is expected to contribute to the design and applications exploiting this singular type of beams.

2.
ACS Omega ; 7(35): 31431-31441, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092601

ABSTRACT

Periodic arrays of metallic nanostructures support collective lattice resonances, which give rise to optical responses that are, at the same time, stronger and more spectrally narrow than those of the localized plasmons of the individual nanostructures. Despite the extensive research effort devoted to investigating the optical properties of lattice resonances, the majority of theoretical studies have analyzed them under plane-wave excitation conditions. Such analysis not only constitutes an approximation to realistic experimental conditions, which require the use of finite-width light beams, but also misses a rich variety of interesting behaviors. Here, we provide a comprehensive study of the response of periodic arrays of metallic nanostructures when excited by finite-width light beams under both paraxial and nonparaxial conditions. We show how as the width of the light beam increases, the response of the array becomes more collective and converges to the plane-wave limit. Furthermore, we analyze the spatial extent of the lattice resonance and identify the optimum values of the light beam width to achieve the strongest optical responses. We also investigate the impact that the combination of finite-size effects in the array and the finite width of the light beam has on the response of the system. Our results provide a solid theoretical framework to understand the excitation of lattice resonances by finite-width light beams and uncover a set of behaviors that do not take place under plane-wave excitation.

3.
Opt Express ; 29(16): 26220-26232, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614932

ABSTRACT

The calculation of the propagation of partially coherent and partially polarized optical beams involves using 4D Fourier Transforms. This poses a major drawback, taking into account memory and computational capabilities of nowadays computers. In this paper we propose an efficient calculation procedure for retrieving the irradiance of electromagnetic Schell-model highly focused beams. We take advantage of the separability of such beams to compute the cross-spectral density matrix by using only 2D Fourier Transforms. In particular, the number of operations depends only on the number of pixels of the input beam, independently on the coherence properties. To provide more insight, we analyze the behavior of a beam without a known analytical solution. Finally, the numerical complexity and computation time is analyzed and compared with some other algorithms.

4.
Sci Rep ; 11(1): 17992, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504161

ABSTRACT

The detection of the longitudinal component of a highly focused electromagnetic beam is not a simple task. Although in recent years several methods have been reported in the literature, this measure is still not routinely performed. This paper describes a method that allows us to estimate and visualize the longitudinal component of the field in a relatively simple way. First, we measure the transverse components of the focused field in several planes normal to the optical axis. Then, we determine the complex amplitude of the two transverse field components: the phase is obtained using a phase recovery algorithm, while the phase difference between the two components is determined from the Stokes parameters. Finally, the longitudinal component is estimated using the Gauss's theorem. Experimental results show an excellent agreement with theoretical predictions.

5.
J Opt Soc Am A Opt Image Sci Vis ; 38(5): 737-748, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983279

ABSTRACT

An introduction to the Hilbert spaces that are endowed with a reproducing kernel is presented on using the mathematical tools of Fourier optics and coherence theory. After giving the basic definition of such spaces, some examples are worked out to show how the inner product can take different forms depending on the particular function space one works with. The basic rule to build a reproducing kernel Hilbert space (RKHS) is then presented together with the basic properties of those spaces. Eigenfunctions and eigenvalues of the reproducing kernel are then illustrated and lead to the important integral representation of the reproducing kernel. The latter is used to present pseudomodal expansions and generalized forms of sampling. The concluding section offers some thoughts on the applications of RKHSs in wave optics. An appendix presents an introduction to treatments using more advanced concepts of functional analysis.

6.
Opt Lett ; 46(5): 973-976, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649634

ABSTRACT

A new, to the best of our knowledge, class of partially coherent sources is introduced on the basis of the Christoffel-Darboux (CD) formula read as the expression of a possible cross-spectral density. It will be seen that such an interpretation is possible because the CD formula gives the reproducing kernel of a suitable Hilbert space. After discussing general properties of CD kernels, a specific example is worked out using Hermite polynomials. A connection with the density matrix will be highlighted.

7.
J Opt Soc Am A Opt Image Sci Vis ; 37(4): 591-605, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32400535

ABSTRACT

Polarization of a light beam is traditionally studied under the hypothesis that the state of polarization is uniform across the transverse section of the beam. In such a case, if the paraxial approximation is also assumed, the propagation of the beam reduces to a scalar problem. Over the last few decades, light beams with spatially variant states of polarization have attracted great attention, due mainly to their potential use in applications such as optical trapping, laser machining, nanoscale imaging, polarimetry, etc. In this tutorial, an introductory treatment of non-uniformly totally polarized beams is given. Besides a brief review of some useful parameters for characterizing the polarization distribution of such beams across transverse planes, from both local and global points of view, several methods for generating them are described. It is expected that this tutorial will serve newcomers as a starting point for further studies on the subject.

8.
Opt Express ; 27(4): 3963-3977, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876020

ABSTRACT

Partially coherent pseudo-Schell model sources are introduced and analyzed. They present radial symmetry and coherence characteristics depending on the difference between the radial distances of two points from the source center. As a consequence, all points belonging to circles centered on the symmetry center of the source are perfectly correlated. We show that such sources radiate fields with peculiar behaviors in paraxial propagation. In particular, when compared to beams produced by Gaussian Schell-model sources with comparable coherence parameters, their irradiance can present sharper profiles and higher peak valuesmono and a better beam quality parameter. Furthermore, when a pseudo-Schell model source presents a vortex, the propagated beam preserves a null of the intensity along its axis.

9.
Opt Lett ; 43(14): 3445-3448, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30004526

ABSTRACT

In this Letter, we describe the behavior of partially coherent, partially polarized focused vector beams after passing a linear polarizer placed at the focal plane of a high numerical aperture microscope lens. In particular, we develop a mathematical framework for such beams that helps the understanding of the performance of polarizers when interact with non-paraxial beams. The features of the focused field after the polarizer are numerically evaluated for some illustrative examples.

10.
Sci Rep ; 8(1): 2657, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422653

ABSTRACT

We introduce a new method for producing optical needles with tunable length and almost constant irradiance based on the evaluation of the on-axis power content of the light distribution at the focal area. According to theoretical considerations, we propose an adaptive modulating continuous function that presents a large derivative and a zero value jump at the entrance pupil of the focusing system. This distribution is displayed on liquid crystal devices using holographic techniques. In this way, a polarized input beam is shaped and subsequently focused using a high numerical aperture (NA) objective lens. As a result, needles with variable length and nearly constant irradiance are produced using conventional optics components. This procedure is experimentally demonstrated obtaining a 53λ-long and 0.8λ-wide needle.

11.
Opt Lett ; 42(20): 4143-4146, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028033

ABSTRACT

Surface plasmon polaritons (SPPs) have emerged as powerful tools for guiding and manipulating light below the diffraction limit. In this context, the availability of flat top SPP beams displaying a constant transversal profile can allow for uniform excitation and coupling scenarios, thus opening the door to developing novel applications that cannot be achieved using conventional Gaussian SPP beams. Here, we present a rigorous theoretical description of flat top SPP beams propagating along flat metal-dielectric interfaces. This is accomplished through the use of Hermite-Gaussian SPP modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. We provide a comprehensive analysis of the evolution of the transversal profiles of these beams as they propagate, which is complemented with the study of the width and kurtosis parameters. Our results serve to enlarge the capabilities of surface plasmon polaritons to control and manipulate light below the diffraction limit.

12.
Sci Rep ; 7: 42122, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28191817

ABSTRACT

Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus' law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.

13.
Opt Express ; 24(7): 6793-801, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27136978

ABSTRACT

We develop a method for encoding information in the longitudinal component of a focused field. Focused beams display a non-zero contribution of the electric field in the direction of propagation. However, the associated irradiance is very weak and difficult to isolate from the transverse part of the beam. For these reasons, the longitudinal component of a focused field could be a good choice for encoding and securing information. Using the Richards and Wolf formalism we show how to encrypt information in the longitudinal domain of the focal area. In addition, we use quantum imaging techniques to enhance the security and to prevent unauthorized access to the information. To the best of our knowledge, this is the first report on using the longitudinal component of the focused fields in optical security.

14.
Opt Express ; 23(22): 28574-83, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561127

ABSTRACT

Using exact solutions of Maxwell's equations, we investigate the evolution of the transversal profile of a surface plasmon polariton (SPP) packet propagating along a planar interface between a dielectric and a lossy metal. We introduce a parameter to measure the propagation length of the SPP packet and analyze its behavior with respect to the shape of the packet and the dielectric characteristics of the interface. Furthermore, we study the polarization properties of the SPP packet and define two parameters to quantify the fraction of the irradiance contained in the s- and p-polarization components of the associated field. Our results help to advance in the understanding of the SPP optics beyond the single-mode description.

15.
Opt Express ; 23(2): 655-66, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835825

ABSTRACT

We present a polarimetric-based optical encoder for image encryption and verification. A system for generating random polarized vector keys based on a Mach-Zehnder configuration combined with translucent liquid crystal displays in each path of the interferometer is developed. Polarization information of the encrypted signal is retrieved by taking advantage of the information provided by the Stokes parameters. Moreover, photon-counting model is used in the encryption process which provides data sparseness and nonlinear transformation to enhance security. An authorized user with access to the polarization keys and the optical design variables can retrieve and validate the photon-counting plain-text. Optical experimental results demonstrate the feasibility of the encryption method.

16.
Opt Lett ; 39(20): 6025-8, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25361146

ABSTRACT

Research on the properties of highly focused fields mainly involved fully polarized light, whereas partially polarized waves received less attention. The aim of this Letter is to provide an appropriate framework, for designing some features of the focused field, when dealing with incoming partially polarized beams. In particular, in this Letter, we describe how to get an unpolarized field on the axis of a high numerical aperture objective lens. Some numerical results that corroborate theoretical predictions are provided.

17.
Opt Express ; 22(6): 6859-67, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24664034

ABSTRACT

We develop a method for generating focused vector beams with circular polarization at any transverse plane. Based on the Richards-Wolf vector model, we derive analytical expressions to describe the propagation of these set of beams near the focal area. Since the polarization and the amplitude of the input beam are not uniform, an interferometric system capable of generating spatially-variant polarized beams has to be used. In particular, this wavefront is manipulated by means of spatial light modulators displaying computer generated holograms and subsequently focused using a high numerical aperture objective lens. Experimental results using a NA = 0.85 system are provided: irradiance and Stokes images of the focused field at different planes near the focal plane are presented and compared with those obtained by numerical simulation.

18.
Opt Express ; 22(26): 32419-28, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25607204

ABSTRACT

The aim of this paper is to provide a formal framework for designing highly focused fields with specific transversal features when the incoming beam is partially polarized. More specifically, we develop a field with a transversal component that remains unpolarized in the focal area. Special attention is paid to the design of the input beam and the development of the experiment. The implementation of such fields is possible by using an interferometric setup combined with the use of digital holography techniques. Experimental results are compared with those obtained numerically.


Subject(s)
Interferometry/instrumentation , Lasers , Lenses , Lighting/instrumentation , Optical Devices , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
19.
Opt Lett ; 38(12): 2065-7, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23938978

ABSTRACT

A method to evaluate the physical realizability of an arbitrary three-dimensional vectorial field distribution in the focal area is proposed. A parameter that measures the similarity between the designed (target) field and the physically achievable beam is provided. This analysis is carried out within the framework of the closest electromagnetic field to a given vectorial function, and the procedure is applied to two illustrative cases.

20.
Opt Express ; 21(5): 5432-9, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482114

ABSTRACT

Methods for generating beams with arbitrary polarization based on the use of liquid crystal displays have recently attracted interest from a wide range of sources. In this paper we present a technique for generating beams with arbitrary polarization and shape distributions at a given plane using a Mach-Zehnder setup. The transverse components of the incident beam are processed independently by means of spatial light modulators placed in each path of the interferometer. The modulators display computer generated holograms designed to dynamically encode any amplitude value and polarization state for each point of the wavefront in a given plane. The steps required to design such beams are described in detail. Several beams performing different polarization and intensity landscapes have been experimentally implemented. The results obtained demonstrate the capability of the proposed technique to tailor the amplitude and polarization of the beam simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...