Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000384

ABSTRACT

The incidence of nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is increasing in adults and children. Unfortunately, effective pharmacological treatments remain unavailable. Single nucleotide polymorphisms (SNPs) in the patatin-like phospholipase domain-containing protein (PNPLA3 I148M) have the most significant genetic association with the disease at all stages of its progression. A roadblock to identifying potential treatments for PNPLA3-induced NAFLD is the lack of a human cell platform that recapitulates the PNPLA3 I148M-mediated onset of lipid accumulation. Hepatocyte-like cells were generated from PNPLA3-/- and PNPLA3I148M/M-induced pluripotent stem cells (iPSCs). Lipid levels were measured by staining with BODIPY 493/503 and were found to increase in PNPLA3 variant iPSC-derived hepatocytes. A small-molecule screen identified multiple compounds that target Src/PI3K/Akt signaling and could eradicate lipid accumulation in these cells. We found that drugs currently in clinical trials for cancer treatment that target the same pathways also reduced lipid accumulation in PNPLA3 variant cells.


Subject(s)
Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Lipase/metabolism , Lipase/genetics , Signal Transduction , Lipid Metabolism , Polymorphism, Single Nucleotide , Acyltransferases , Phospholipases A2, Calcium-Independent
2.
iScience ; 26(11): 108184, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026167

ABSTRACT

O-GlcNAcylation is a key post-translational modification, playing a vital role in cell signaling during development, especially in the brain. In this study, we investigated the role of O-GlcNAcylation in regulating the homeobox protein OTX2, which contributes to various brain disorders, such as combined pituitary hormone deficiency, retinopathy, and medulloblastoma. Our research demonstrated that, under normal physiological conditions, the proteasome plays a pivotal role in breaking down endogenous OTX2. However, when the levels of OTX2 rise, it forms oligomers and/or aggregates that require macroautophagy for clearance. Intriguingly, we demonstrated that O-GlcNAcylation enhances the solubility of OTX2, thereby limiting the formation of these aggregates. Additionally, we unveiled an interaction between OTX2 and the chaperone protein CCT5 at the O-GlcNAc sites, suggesting a potential collaborative role in preventing OTX2 aggregation. Finally, our study demonstrated that while OTX2 physiologically promotes cell proliferation, an O-GlcNAc-depleted OTX2 is detrimental to cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...