Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Access ; 6: 23992026211070406, 2022.
Article in English | MEDLINE | ID: mdl-36204519

ABSTRACT

Substandard and falsified (SF) medicines are a global health challenge with the World Health Organization (WHO) estimating that 1 in 10 of medicines in low- and middle-income countries (LMICs) are SF. Antimicrobials (i.e. antimalarials, antibiotics) are the most commonly reported SF medicines. SF medicines contribute significantly to the global burden of infectious diseases and antimicrobial resistance (AMR). This article discusses the challenges associated with the global impact of SF and unregistered/unlicensed antimicrobials with a focus on anti-TB medicines. Tuberculosis (TB) is the 13th leading cause of death worldwide, and is currently the second leading cause of death from a single infectious agent, ranking after COVID-19 and above HIV/AIDS. Specifically in the case of TB, poor quality of anti-TB medicines is among the drivers of the emergence of drug-resistant TB pathogens. In this article, we highlight and discuss challenges including the emergence of SF associated AMR, patient mistrust and lack of relevant data. We also present study reports to inform meaningful change. Recommended solutions involve the adaptation of interventions from high-income countries (HICs) to LMICS, the need for improvement in the uptake of medication authentication tools in LMICs, increased stewardship, and the need for global and regional multidisciplinary legal and policy cooperation, resulting in improved legal sanctions.

2.
PLoS Comput Biol ; 18(7): e1010330, 2022 07.
Article in English | MEDLINE | ID: mdl-35849631

ABSTRACT

The COVID-19 pandemic has accelerated the need to identify new antiviral therapeutics at pace, including through drug repurposing. We employed a Quadratic Unbounded Binary Optimization (QUBO) model, to search for compounds similar to Remdesivir, the first antiviral against SARS-CoV-2 approved for human use, using a quantum-inspired device. We modelled Remdesivir and compounds present in the DrugBank database as graphs, established the optimal parameters in our algorithm and resolved the Maximum Weighted Independent Set problem within the conflict graph generated. We also employed a traditional Tanimoto fingerprint model. The two methods yielded different lists of lead compounds, with some overlap. While GS-6620 was the top compound predicted by both models, the QUBO model predicted BMS-986094 as second best. The Tanimoto model predicted different forms of cobalamin, also known as vitamin B12. We then determined the half maximal inhibitory concentration (IC50) values in cell culture models of SARS-CoV-2 infection and assessed cytotoxicity. We also demonstrated efficacy against several variants including SARS-CoV-2 Strain England 2 (England 02/2020/407073), B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). Lastly, we employed an in vitro polymerization assay to demonstrate that these compounds directly inhibit the RNA-dependent RNA polymerase (RdRP) of SARS-CoV-2. Together, our data reveal that our QUBO model performs accurate comparisons (BMS-986094) that differed from those predicted by Tanimoto (different forms of vitamin B12); all compounds inhibited replication of SARS-CoV-2 via direct action on RdRP, with both models being useful. While Tanimoto may be employed when performing relatively small comparisons, QUBO is also accurate and may be well suited for very complex problems where computational resources may limit the number and/or complexity of possible combinations to evaluate. Our quantum-inspired screening method can therefore be employed in future searches for novel pharmacologic inhibitors, thus providing an approach for accelerating drug deployment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Repositioning , Humans , Pandemics , RNA-Dependent RNA Polymerase , Vitamin B 12
3.
PLoS One ; 16(9): e0256813, 2021.
Article in English | MEDLINE | ID: mdl-34525109

ABSTRACT

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Hot Temperature , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Inactivation , COVID-19/epidemiology , COVID-19/virology , Epidemics/prevention & control , Humans , Nasopharynx/virology , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/physiology , Sensitivity and Specificity , Specimen Handling/methods , Workflow
4.
medRxiv ; 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33851184

ABSTRACT

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna ® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/ .

5.
Genome Res ; 23(10): 1615-23, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23783272

ABSTRACT

Pre-mRNA splicing is required for the accurate expression of virtually all human protein coding genes. However, splicing also plays important roles in coordinating subsequent steps of pre-mRNA processing such as polyadenylation and mRNA export. Here, we test the hypothesis that nuclear pre-mRNA processing influences the polyribosome association of alternative mRNA isoforms. By comparing isoform ratios in cytoplasmic and polyribosomal extracts, we determined that the alternative products of ∼30% (597/1954) of mRNA processing events are differentially partitioned between these subcellular fractions. Many of the events exhibiting isoform-specific polyribosome association are highly conserved across mammalian genomes, underscoring their possible biological importance. We find that differences in polyribosome association may be explained, at least in part by the observation that alternative splicing alters the cis-regulatory landscape of mRNAs isoforms. For example, inclusion or exclusion of upstream open reading frames (uORFs) in the 5'UTR as well as Alu-elements and microRNA target sites in the 3'UTR have a strong influence on polyribosome association of alternative mRNA isoforms. Taken together, our data demonstrate for the first time the potential link between alternative splicing and translational control of the resultant mRNA isoforms.


Subject(s)
Alternative Splicing , Cytoplasm/metabolism , High-Throughput Nucleotide Sequencing , Polyribosomes/metabolism , RNA Isoforms/metabolism , Sequence Analysis, RNA , 3' Untranslated Regions , 5' Untranslated Regions , Cytoplasm/genetics , Evolution, Molecular , Gene Expression Regulation , HEK293 Cells , Humans , Phylogeny , Polyribosomes/genetics , RNA Isoforms/genetics , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional
SELECTION OF CITATIONS
SEARCH DETAIL
...