Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0213641, 2019.
Article in English | MEDLINE | ID: mdl-30917146

ABSTRACT

As climate change continues to exert increasing pressure upon the livelihoods and agricultural sector of many developing and developed nations, a need exists to understand and prioritise at the sub national scale which areas and communities are most vulnerable. The purpose of this study is to develop a robust, rigorous and replicable methodology that is flexible to data limitations and spatially prioritizes the vulnerability of agriculture and rural livelihoods to climate change. We have applied the methodology in Vietnam, Uganda and Nicaragua, three contrasting developing countries that are particularly threatened by climate change. We conceptualize vulnerability to climate change following the widely adopted combination of sensitivity, exposure and adaptive capacity. We used Ecocrop and Maxent ecological models under a high emission climate scenario to assess the sensitivity of the main food security and cash crops to climate change. Using a participatory approach, we identified exposure to natural hazards and the main indicators of adaptive capacity, which were modelled and analysed using geographic information systems. We finally combined the components of vulnerability using equal-weighting to produce a crop specific vulnerability index and a final accumulative score. We have mapped the hotspots of climate change vulnerability and identified the underlying driving indicators. For example, in Vietnam we found the Mekong delta to be one of the vulnerable regions due to a decline in the climatic suitability of rice and maize, combined with high exposure to flooding, sea level rise and drought. However, the region is marked by a relatively high adaptive capacity due to developed infrastructure and comparatively high levels of education. The approach and information derived from the study informs public climate change policies and actions, as vulnerability assessments are the bases of any National Adaptation Plans (NAP), National Determined Contributions (NDC) and for accessing climate finance.


Subject(s)
Agriculture/methods , Climate Change , Decision Making , Food Supply , Risk Assessment , Crops, Agricultural , Droughts , Floods , Geographic Information Systems , Geography , Health Policy , Nicaragua , Public Policy , Rural Population , Tropical Climate , Uganda , Vietnam , Zea mays
2.
Mitig Adapt Strateg Glob Chang ; 22(6): 903-927, 2017.
Article in English | MEDLINE | ID: mdl-30093821

ABSTRACT

The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.

3.
Sci Total Environ ; 556: 231-41, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26974571

ABSTRACT

The West African cocoa belt, reaching from Sierra Leone to southern Cameroon, is the origin of about 70% of the world's cocoa (Theobroma cacao), which in turn is the basis of the livelihoods of about two million farmers. We analyze cocoa's vulnerability to climate change in the West African cocoa belt, based on climate projections for the 2050s of 19 Global Circulation Models under the Intergovernmental Panel on Climate Change intermediate emissions scenario RCP 6.0. We use a combination of a statistical model of climatic suitability (Maxent) and the analysis of individual, potentially limiting climate variables. We find that: 1) contrary to expectation, maximum dry season temperatures are projected to become as or more limiting for cocoa as dry season water availability; 2) to reduce the vulnerability of cocoa to excessive dry season temperatures, the systematic use of adaptation strategies like shade trees in cocoa farms will be necessary, in reversal of the current trend of shade reduction; 3) there is a strong differentiation of climate vulnerability within the cocoa belt, with the most vulnerable areas near the forest-savanna transition in Nigeria and eastern Côte d'Ivoire, and the least vulnerable areas in the southern parts of Cameroon, Ghana, Côte d'Ivoire and Liberia; 4) this spatial differentiation of climate vulnerability may lead to future shifts in cocoa production within the region, with the opportunity of partially compensating losses and gains, but also the risk of local production expansion leading to new deforestation. We conclude that adaptation strategies for cocoa in West Africa need to focus at several levels, from the consideration of tolerance to high temperatures in cocoa breeding programs, the promotion of shade trees in cocoa farms, to policies incentivizing the intensification of cocoa production on existing farms where future climate conditions permit and the establishment of new farms in already deforested areas.


Subject(s)
Adaptation, Physiological , Cacao/physiology , Climate Change , Environmental Monitoring , Cameroon , Chocolate , Conservation of Natural Resources , Cote d'Ivoire , Ghana , Grassland , Nigeria , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...