Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Anthropol ; 29(1): 1-12, 2010.
Article in English | MEDLINE | ID: mdl-20453428

ABSTRACT

To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40+/-0 degrees C and 45.1+/-0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32+/-5%) in comparison to the trunk (11+/-2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs' sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency.


Subject(s)
Acclimatization/physiology , Hot Temperature , Sweating/physiology , Adult , Analysis of Variance , Body Temperature , Brazil , Exercise , Heart Rate , Humans , Male , Oxygen Consumption/physiology , Thermodynamics , Tropical Climate
2.
Cell Stress Chaperones ; 15(6): 885-95, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20414820

ABSTRACT

In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL(-1); p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL(-1); p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.


Subject(s)
Exercise , HSP72 Heat-Shock Proteins/blood , Hot Temperature , Acclimatization , Adult , Body Temperature , HSP72 Heat-Shock Proteins/metabolism , Heart Rate , Humans , Leukocytes/immunology , Leukocytes/metabolism , Male , Regression Analysis , Sweating/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...