Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Neurochem Res ; 25(2): 211-5, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10786704

ABSTRACT

Glutamate is to be considered a nociceptive neurotransmitter and glutamatergic antagonists present antinoceptive activity. In this study we investigated the effects of the naturally occurring antinociceptive compounds rutin, geraniin and quercetine extracted from Phyllanthus, as well as the diterpene jatrophone, extracted from Jatropha elliptica on the binding of [3H]glutamate and [3H]GMP-PNP [a GTP analogue which binds to extracellular site(s), modulating the glutamatergic transmission] in rat brain membrane. Jatrophone inhibited [3H]glutamate binding and geraniin inhibited [3H]GMP-PNP binding. Quercetine inhibited the binding of both ligands. These results may indicate a neurochemical parameter possibly related to the antinoceptive activity of these natural compounds.


Subject(s)
Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Guanylyl Imidodiphosphate/metabolism , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Cell Membrane/metabolism , Protein Binding , Rats , Rats, Wistar , Tritium
2.
Neurochem Res ; 23(2): 183-8, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9475513

ABSTRACT

Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover, guanine nucleotides GTP, GDP or GMP, inhibited the glutamate-induced cAMP accumulation. By measuring LDH activity in the buffer surrounding the slices, we showed that the integrity of the slices was maintained, indicating that the effect of guanine nucleotides was extracellular. GMP, GDPbeta-S or Gpp(NH)p abolished quisqualate-induced cAMP accumulation. GDPbeta-S or Gpp(NH)p but not GMP inhibited 1S,3R-ACPD-induced cAMP accumulation. The response evoked by glutamate was also abolished by the mGluR antagonists: L-AP3 abolished glutamate-induced cAMP accumulation in a dose-dependent manner and MCPG was effective only at the 2 mM dose. DNQX was ineffective. We are reporting here, an inhibition induced by guanine nucleotides, via an extracellular site (s), similar to the observed with classical glutamate antagonists on a cellular response evoked by mGluR agonists.


Subject(s)
Cyclic AMP/antagonists & inhibitors , Guanine Nucleotides/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Animals , Cyclic AMP/metabolism , Cycloleucine/analogs & derivatives , Cycloleucine/pharmacology , Glutamic Acid/pharmacology , Guanosine Diphosphate/analogs & derivatives , Guanosine Diphosphate/pharmacology , Guanosine Monophosphate/pharmacology , Guanosine Triphosphate/pharmacology , Guanylyl Imidodiphosphate/pharmacology , Hippocampus/drug effects , Hippocampus/growth & development , Hippocampus/metabolism , Neurotoxins/pharmacology , Quisqualic Acid/pharmacology , Rats , Rats, Wistar , Thionucleotides/pharmacology
3.
Braz J Med Biol Res ; 30(5): 591-7, 1997 May.
Article in English | MEDLINE | ID: mdl-9283625

ABSTRACT

Follicle-stimulating hormone (FSH) and insulin regulate glycide metabolism in Sertoli cells, thus stimulating lactate production. These stimulatory effects of FSH and insulin do not require protein synthesis, suggesting a modulation of enzyme activity and/or regulation of glucose transport. The present investigation was performed to characterize the hormonal control of lipid metabolism in Sertoli cells. The data indicate that FSH and insulin have a regulatory effect on lipid metabolism in Sertoli cells. After 8 h of preincubation with insulin (5 micrograms/ml), the activity of the enzyme ATP-citrate lyase in cultured Sertoli cells was increased from 0.19 to 0.34 nmol NAD+ formed microgram protein-1 min-1. FSH (100 ng/ml) had no effect on this enzyme. Glycerol phosphate dehydrogenase activity was not affected by any of the hormones tested. When Sertoli cells from 19-day old rats were incubated with [1,2-14C]acetate for 90 or 360 min, the [14C] label was present predominantly in triglyceride and phospholipid fractions with minor amounts in other lipids. In Sertoli cells pretreated for 16 h with insulin and FSH, an increase in acetate incorporation into lipids was observed. Most of the label was in esterified lipids and this percentage increased with the time of treatment; this increase was remarkable in triglycerides of control cells (18.8% to 30.6%). Since Sertoli cell triglycerides participate in the control of spermatogenesis, the present data suggest that the hormonal control of lipid metabolism in Sertoli cells is important not only for maintaining the energy of the cell itself, but also for the control of the spermatogenesis process.


Subject(s)
Follicle Stimulating Hormone/metabolism , Insulin/metabolism , Lactic Acid/biosynthesis , Lipids/biosynthesis , Sertoli Cells/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , Acetates/metabolism , Animals , Cell Culture Techniques , Glucose/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Male , Rats , Rats, Wistar
4.
Braz. j. med. biol. res ; 30(5): 591-7, May 1997. tab, graf
Article in English | LILACS | ID: lil-196669

ABSTRACT

Follicle-stimulating hormone (FSH) and insulin regulate glycide metabolism in Sertoli cells, thus stimulating lactate production. These stimulatory effects of FSH and insulin do not require protein synthesis, suggesting a modulation of enzyme activity and/or regulation of glucose transport. The present investigation was performed to characterize the hormonal control of lipid metabolism in Sertoli cells. The data indicate that FSH and insulin have a regulatory effect on lipid metabolism in Sertoli cells. After 8 h of preincubation with insulin (5 mug/ml), the activity of the enzyme ATP-citrate lyase in sultured Sertoli cells was increased from 0.19 to 0.34 nmol NAD+ formed mug protein(-1) min(-1). FSH (100 ng/ml) had no effect on this enzyme. Glycerol phosphate dehydrogenase activity was not affected by any of the hormones tested. When Sertoli cells from 19-day old rats were incubated with [1,2-14C] acetate for 90 or 360 min, the [14C] label was present predominantly in triglyceride and phospholipid fractions with minor amounts in other lipids. In Sertoli cells pretreated for 16 h with insulin and FSH, an increase in acetate incorporation into lipids was observed. Most of the label was in esterified lipids and this percentage increased with the time of treatment; this increase was remarkable in triglycerides of control cells (18.8 percent to 30.6 percent). Since Sertoli cell triglycerides participate in the control of spermatogenesis, the present data suggest that the hormonal control of lipid metabolism in Sertoli cells is important not only for maintaining the energy of the cell itself, but also for the control of the spermatogenesis process.


Subject(s)
Rats , Male , Animals , Infant, Newborn , Acetates/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , Follicle Stimulating Hormone/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Insulin/metabolism , Lactic Acid/biosynthesis , Lipids/biosynthesis , Sertoli Cells/metabolism , Cell Culture Techniques , Glucose/metabolism , Rats, Wistar
5.
Neurochem Res ; 20(9): 1033-9, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8570007

ABSTRACT

Changes on cyclic adenosine monophosphate (cAMP) levels in response to adenosine and glutamate and the subtype of glutamate receptors involved in this interaction were studied in slices of optic tectum from 3-day-old chicks. cAMP accumulation mediated by adenosine (100 microM) was abolished by 8-phenyltheophylline (15 microM). Glutamate and the glutamatergic agonists kainate or trans-D, L-1-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) did not evoke cAMP accumulation. Glutamate blocked the adenosine response in a dose-dependent manner. At 100 microM, glutamate did not inhibit the effect of adenosine. The 1 mM and 10 mM doses of glutamate inhibited adenosine-induced cAMP accumulation by 55% and 100%, respectively. When glutamatergic antagonists were used, this inhibitory effect was not affected by 200 microM 6,7-dihydroxy-2,3,dinitroquinoxaline (DNQX), an ionotropic antagonist, and was partially antagonized by 1 mM (RS)-alpha-methyl-4-carboxyphenylglycine [(RS)M-CPG], a metabotropic antagonist, while 1 mM L-2-amino-3-phosphonopropionate (L-AP3) alone, another metabotropic antagonist, presented the same inhibitory effect of glutamate. Kainate (10 mM) and trans-ACPD (100 microM and 1 mM) partially blocked the adenosine response. This study indicates the involvement of metabotropic glutamate receptors in adenylate cyclase inhibition induced by glutamate and its agonists trans-ACPD and kainate.


Subject(s)
Adenosine/pharmacology , Cyclic AMP/metabolism , Glutamic Acid/pharmacology , Receptors, Metabotropic Glutamate/physiology , Superior Colliculi/drug effects , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Benzoates , Chickens , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/analogs & derivatives , Glycine/analogs & derivatives , In Vitro Techniques , Male , Quinoxalines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...