Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839969

ABSTRACT

Stevia species (Asteraceae) have been a rich source of terpenoid compounds, mainly sesquiterpene lactones, several of which show antiprotozoal activity. In the search for new trypanocidal compounds, S. satureiifolia var. satureiifolia and S. alpina were studied. Two sesquiterpene lactones, santhemoidin C and 2-oxo-8-deoxyligustrin, respectively, were isolated. These compounds were assessed in vitro against Trypanosoma cruzi stages, showing IC50 values of 11.80 and 4.98 on epimastigotes, 56.08 and 26.19 on trypomastigotes and 4.88 and 20.20 µM on amastigotes, respectively. Cytotoxicity was evaluated on Vero cells by the MTT assay. The effect of the compounds on trypanothyone reductase (TcTR), Trans-sialidase (TcTS) and the prolyl oligopeptidase of 80 kDa (Tc80) as potential molecular targets of T. cruzi was investigated. Santhemoidin C inhibited oligopeptidase activity when tested against recombinant Tc80 using a fluorometric assay, reaching an IC50 of 34.9 µM. Molecular docking was performed to study the interaction between santhemoidin C and the Tc80 protein, reaching high docking energy levels. Plasma membrane shedding and cytoplasmic vacuoles, resembling autophagosomes, were detected by transmission microscopy in parasites treated with santhemoidin C. Based on these results, santhemoidin C represents a promising candidate for further studies in the search for new molecules for the development of trypanocidal drugs.

2.
Bioorg Med Chem ; 61: 116708, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35334448

ABSTRACT

The development of cruzipain inhibitors represents one of the most attractive challenges in the search for drugs for the treatment of Chagas disease. A recombinant form of this enzyme, cruzain, has been crystallized with numerous inhibitors, excluding thiosemicarbazones. These compounds have been established as potent inhibitors of cruzain, although there is very little data in the literature of thiosemicarbazones tested on cruzipain. In this work, we present the results of the evaluation of eleven thiosemicarbazones on cruzipain, isolated from T. cruzi epimastigotes, six of them previously evaluated on cruzain. For these latter, we studied through computational methods, the mode of interaction with the active site of cruzain and the contribution of geometric parameters to the possible mechanism of action involved in the observed inhibition. Finally, from some geometric parameters analyzed on modeled TSC-cruzain complexes, a semi-quantitative relationship was established that could explain the inhibitory activity of thiosemicarbazones on cruzipain, the enzyme actually present in the parasite.


Subject(s)
Chagas Disease , Thiosemicarbazones , Trypanosoma cruzi , Chagas Disease/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Protozoan Proteins , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology
3.
J Pharm Pharmacol ; 64(6): 832-42, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22571261

ABSTRACT

OBJECTIVES: To investigate the molecular interaction between ß-cyclodextrin (ßCD) or hydroxypropyl-ß-cyclodextrin (HPßCD) and riboflavin (RF), and to test the anticancer potential of these formulations. METHODS: The physicochemical characterization of the association between RF and CDs was performed by UV-vis absorption, fluorescence, differential scanning calorimetry and NMR techniques. Molecular dynamics simulation was used to shed light on the mechanism of interaction of RF and CDs. Additionally, in-vitro cell culture tests were performed to evaluate the cytotoxicity of the RF-CD complexes against prostate cancer cells. KEY FINDINGS: Neither ßCD nor HPßCD led to substantial changes in the physicochemical properties of RF (with the exception of solubility). Additionally, rotating frame Overhauser effect spectroscopy experiments detected no spatial correlations between hydrogens from the internal cavity of CDs and RF, while molecular dynamics simulations revealed 'out-of-ring' RF-CD interactions. Notwithstanding, both RF-ßCD and RF-HPßCD complexes were cytotoxic to PC3 prostate cancer cells. CONCLUSIONS: The interaction between RF and either ßCD or HPßCD, at low concentrations, seems to be made through hydrogen bonding between the flavonoid and the external rim of both CDs. Regardless of the mechanism of complexation, our findings indicate that RF-CD complexes significantly increase RF solubility and potentiate its antitumour effect.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Prostatic Neoplasms/drug therapy , Riboflavin/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Humans , Hydrogen Bonding , Male , Riboflavin/pharmacology , Riboflavin/therapeutic use , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...