Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Elife ; 122023 07 31.
Article in English | MEDLINE | ID: mdl-37523305

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes , T-Lymphocytes, Helper-Inducer , Lung
2.
Nat Commun ; 13(1): 5722, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175400

ABSTRACT

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipose Tissue , Angiotensin-Converting Enzyme 2 , Cytokines , Humans
3.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35951647

ABSTRACT

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Subject(s)
Brain , COVID-19 , Central Nervous System Viral Diseases , SARS-CoV-2 , Astrocytes/pathology , Astrocytes/virology , Brain/pathology , Brain/virology , COVID-19/complications , COVID-19/pathology , Central Nervous System Viral Diseases/etiology , Central Nervous System Viral Diseases/pathology , Humans , Post-Acute COVID-19 Syndrome
4.
Mem Inst Oswaldo Cruz ; 117: e210194, 2022.
Article in English | MEDLINE | ID: mdl-35976280

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus associated with foetal malformations and neurological complications. The infection is usually associated with mild symptoms. The comparison between the allelic frequency of polymorphic genes in symptomatic infected individuals in the population can clarify the pathogenic mechanisms of ZIKV. During ZIKV infection, cytokines are produced and natural killer (NK) cells are recruited, whose activation depends on signaling pathways activated by specific receptors, such as killer cell immunoglobulin-like receptors (KIR). These molecules interact with human leukocyte antigen (HLA) class I ligands and are encoded by polymorphic genes. OBJECTIVES: This study aimed to evaluate the frequency of allelic variants of the genes encoding the KIR receptors and their HLA class I ligands in 139 symptomatic ZIKV-patients and 170 controls negative for the virus, and to evaluate the role of these variants for ZIKV susceptibility. METHODS: KIR and HLA class I genes were genotyped using the polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) technique. FINDINGS: No significant differences in the frequency distribution of KIRs and KIR-HLA in patients compared to controls were observed. MAIN CONCLUSIONS: KIR and its HLA ligands might play a minor role in ZIKV infection in the south and southeast Brazilian individuals.


Subject(s)
Zika Virus Infection , Zika Virus , Brazil , Gene Frequency/genetics , Genotype , Histocompatibility Antigens Class I/immunology , Humans , Ligands , Receptors, KIR/genetics , Zika Virus/genetics , Zika Virus Infection/genetics
5.
J. pediatr. (Rio J.) ; 98(4): 362-368, July-Aug. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1386115

ABSTRACT

Abstract Objectives: To detect RSV or other thirteen respiratory viruses as possible causer agent of bronchiolitis in infants. Method: This is an epidemiological analytical study, conducted using a nasopharyngeal aspirate of 173 hospitalized children younger than two years old with severe bronchiolitis in three hospitals in the Campinas Metropolitan Region (CMR) during 2013-14. The data was statically evaluated by Pearson's chi-squared test with statistical significance of 0.05 and 95% confidence level. Results: As expected, the most prevalent viruses detected were RSV A and B in 47% and 16% of the samples, respectively. However, almost a third of severe bronchiolitis cases there were no detection of RSV, and the viruses more commonly detected were rhinoviruses, which were identified in almost a quarter of all positive samples for at least a viral agent. Conclusions: Although nothing could be concluded from the disease severity and clinicalepidemiological data, the present study's results indicate that severe bronchiolitis is not always related to RSV infections in children younger than two years old, and the rhinoviruses were more prevalent in these cases. These findings reinforce the need to carry out a

6.
J Pediatr (Rio J) ; 98(4): 362-368, 2022.
Article in English | MEDLINE | ID: mdl-34942156

ABSTRACT

OBJECTIVES: To detect RSV or other thirteen respiratory viruses as possible causer agent of bronchiolitis in infants. METHOD: This is an epidemiological analytical study, conducted using a nasopharyngeal aspirate of 173 hospitalized children younger than two years old with severe bronchiolitis in three hospitals in the Campinas Metropolitan Region (CMR) during 2013-14. The data was statically evaluated by Pearson's chi-squared test with statistical significance of 0.05 and 95% confidence level. RESULTS: As expected, the most prevalent viruses detected were RSV A and B in 47% and 16% of the samples, respectively. However, almost a third of severe bronchiolitis cases there were no detection of RSV, and the viruses more commonly detected were rhinoviruses, which were identified in almost a quarter of all positive samples for at least a viral agent. CONCLUSIONS: Although nothing could be concluded from the disease severity and clinical-epidemiological data, the present study's results indicate that severe bronchiolitis is not always related to RSV infections in children younger than two years old, and the rhinoviruses were more prevalent in these cases. These findings reinforce the need to carry out a viral diagnosis in the hospital emergency would be very appropriate for all cases of respiratory infections in children, even for diseases in which the primary etiological agent seems to be well known.


Subject(s)
Bronchiolitis, Viral , Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Bronchiolitis/diagnosis , Bronchiolitis/epidemiology , Bronchiolitis, Viral/epidemiology , Child , Child, Preschool , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Rhinovirus , Severity of Illness Index
7.
Mem. Inst. Oswaldo Cruz ; 117: e210194, 2022. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1394475

ABSTRACT

BACKGROUND Zika virus (ZIKV) is an emerging arbovirus associated with foetal malformations and neurological complications. The infection is usually associated with mild symptoms. The comparison between the allelic frequency of polymorphic genes in symptomatic infected individuals in the population can clarify the pathogenic mechanisms of ZIKV. During ZIKV infection, cytokines are produced and natural killer (NK) cells are recruited, whose activation depends on signaling pathways activated by specific receptors, such as killer cell immunoglobulin-like receptors (KIR). These molecules interact with human leukocyte antigen (HLA) class I ligands and are encoded by polymorphic genes. OBJECTIVES This study aimed to evaluate the frequency of allelic variants of the genes encoding the KIR receptors and their HLA class I ligands in 139 symptomatic ZIKV-patients and 170 controls negative for the virus, and to evaluate the role of these variants for ZIKV susceptibility. METHODS KIR and HLA class I genes were genotyped using the polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) technique. FINDINGS No significant differences in the frequency distribution of KIRs and KIR-HLA in patients compared to controls were observed. MAIN CONCLUSIONS KIR and its HLA ligands might play a minor role in ZIKV infection in the south and southeast Brazilian individuals.

8.
J Photochem Photobiol ; 8: 100072, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34635881

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is mainly transmitted by airborne droplets generated by infected individuals. Since this and many other pathogens are able to remain viable on inert surfaces for extended periods of time, contaminated surfaces play an important role in SARS-CoV-2 fomite transmission. Cosmetic products are destined to be applied on infection-sensitive sites, such as the lips and eyelids. Therefore, special biosafety precautions should be incorporated into the routine procedures of beauty parlors and shops. Indeed, innovative cosmetics companies are currently searching for disinfection protocols that ensure the customers' safety in makeup testing. Here, we propose an ultraviolet germicidal irradiation (UVGI) strategy that can be used to reduce the odds of COVID-19 fomite transmission by makeup testers. It is well-known that UVGI effectively inactivates pathogens on flat surfaces and clear fluids. However, ultraviolet-C (UVC) radiation at 254 nm penetrates poorly in turbid and porous materials, such as makeup and lipstick formulations. Thus, we investigated the virucidal effect of UVGI against SARS-CoV-2 deposited on such substrates and compared their performance to that of flat polystyrene surfaces, used as controls. Concentrated infectious SARS-CoV-2 inoculum (106 PFU/mL) deposited on lipstick and makeup powder was completely inactivated (>5log10 reduction) following UVC exposures at 1,260 mJ/cm2, while flat plastic surfaces required 10 times less exposure (126 mJ/cm2) to reach the same microbicidal performance. We conclude that UVGI comprises an effective disinfection strategy to promote biosafety for cosmetics testers. However, appropriate UVC dosimetry must be implemented to overcome inefficiencies caused by the optical properties of turbid materials in lipsticks and makeup powders.

10.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697943

ABSTRACT

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Subject(s)
Betacoronavirus/physiology , Blood Glucose/metabolism , Coronavirus Infections/complications , Diabetes Complications/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Monocytes/metabolism , Pneumonia, Viral/complications , Adult , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Female , Glycolysis , Humans , Inflammation/complications , Inflammation/metabolism , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Signal Transduction
11.
Article in English | MEDLINE | ID: mdl-26579205

ABSTRACT

Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...